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2. Overall Objectives

2.1. Overview
The LIS team aims at developing formal methods for handling complex data sets in a flexible and precise
way. “Flexible” means that the content determines the shape of the container. Very often, it is the opposite
that is observed; e.g., the tree-like shape of a hierarchical file system enforces the tree-like shape of software
packages. “Precise” means that any subset of the data set can be easily characterized. Again, it is the opposite
that is often observed; e.g., in a hierarchical file system only sub-trees can be easily characterized. More
and more information is available on the Web, and more and more information can be stored on a single
machine. However, whereas the related low-level technology is developing, and performance is increasing,
little is done for organizing the ever-growing amount of information. Therefore, the LIS team addresses the
issues of organizing and querying information in general. The solutions are to be both formal and practical.
Operational issues such as index technologies are important, but we are convinced that their scope is too
limited to solve the crucial issues.

At a formal level, queries and answers are two key notions. It is nowadays standard to consider queries as
logical formulas and answers as special models of queries. Computing the preferred model of a query in some
context is conceptually easy, and it warrants flexibility. However, the opposite is not that easy in general; given
a subset of the data, how can we compute a query of which it is a model? Given two different subsets of
the data, how can we compute a query that explains the difference? Knowing this would warrant precision.
The LIS team proved that formal concept analysis (FCA [39]) is a powerful framework for analyzing
〈query , answer〉 pairs. Formal concepts formalize the association between a query and its answers. Formal
concepts are structured into a lattice which provides navigation links between concepts.

However, standard FCA cannot deal with queries considered as logical formulas (recall that this is the key
for flexibility). Therefore a variant of FCA for logical description has been developed [9] altogether with the
generic notion of Logical information system (LIS) that provided a reconstruction of all information system
operations based on logical concept analysis. In particular, some data-mining operations are native in LIS [9],
[5], [6].
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The mottoes of the LIS research are:

1. Never enforce a priori structure to information. E.g., do not use hierarchical structures. Enforcing
a priori structure causes the tyranny of the dominant decomposition [49]. For instance, the usual
class-based organisation of source code makes highly visible the connections between methods of
the same class, but masks the possible connections between methods in different classes.

Instead, consider pieces of information as a bulk. Structure should emerge a posteriori from the
contents or the point of view. As a consequence, updating the contents may change the structure: we
accept it.

2. Consider every possible rational classification, and permit changes at any time. Here, rational means
that what makes a piece of information belong or not to a class depends on the very piece of
information, not on other pieces. The concept lattice induced by FCA is precisely a means to grasp
all possible rational classifications.

3. Rare events are as important as the frequent ones. One cannot say a priori if a piece of information
is interesting because it presents a frequent pattern, or because it presents a rare pattern.

So, rare events must not be masked by statistical artefacts. Statistics is not forbidden, but it is only a
complement of a symbolic logic approach.

4. Queries should be possible answers.

In usual information systems (say relational databases or Web browsers) there is a strict dichotomy
between queries (they are intensional expressions), and answers (they are strictly extensional
expressions, i.e. sets of things). We contend that a good answer must be a mix of extensional and
intensional answers. E.g. the good answer to “I would like to buy a book” is seldom the whole
catalog of the bookshop; it is more relevant to answer such a query with other queries, like “Is this
for a child” or “Do you prefer novels of documents”.

Note that hierarchical file systems already do that. Queries (i.e., filepaths) yield answers that contain
other queries (i.e., sub-directories). One of the LIS achievements is a formalization of this behaviour
that does not rely on an a priori hierarchical structure.

Our research is intended to be vertical in the sense that all aspects of information systems are of interest:
design, implementation, and applications.

On the implementation side, the LIS team develops systems that present the LIS abstraction either at the file
system level [13], [12] or at the user level.

On the application side, the LIS team explores the application of LIS to Geographical information systems
(GIS). The intuition here is that the traditional layered organization of information in GIS suffers a rigid
structure of thematic layers. Moreover, GIS applications usually cope with highly heterogeneous information
and large amount of data; this makes them an interesting challenge for LIS. The team also works on a data-
mining interpretation of bug tracking. In this case, the intuition is that pieces of information relevant to
software engineering, e.g. programs, specifications or tests, can be explored very systematically by a LIS.
More generally, applications to software engineering are important for the team.

2.2. Key Issues
In its current state, LIS raises several questions that we wish to answer.

• The file system implementation of LIS can handle around 1 million elementary pieces of information.

How can it handle more? Can we reach 100 million in the next few years?

• The LIS formalism is generic w.r.t. the logic used for describing pieces of information.
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What are the appropriate logics for the application fields that we have chosen? (GIS and error
localization) Do we need a brand new logic for every application, or is there something that different
applications can share?

• Genericity of LIS w.r.t. logic opens the door for creating ad hoc logics for describing pieces of
information of an application. We already have proposed the framework of logic functors for helping
a user build safely ad hoc logics. Logic functors are certified logic components that can be composed
to form certified implementations of a logic.

What are the useful logic functors? How can we be sure that a toolbox of logic functors is complete
for a given purpose?

Can the idea of certified composition be applied to another domain? Given a domain foo, foo
functors would be certified foo components that can be assembled to form certified implementations
of foo systems.

Is it possible to certify other properties than meta-logical properties? E.g. is it possible to character-
ize complexity, or other non-functional properties like security?

• A family of non-commutative logics has developed over the years in the domain of computational
linguistics, e.g. Lambek logic, pregroups. As for LIS, a great amount of creativity is expected for
extending this family with ad hoc logics that would tackle fine-grained linguistics phenomena.

Is it possible to build up an implementation of these logics using logic functors?

Some LIS applications deal with objects that are sequential by nature (say, texts).

Can these non-commutative logics primarily developed for computational linguistics help in LIS
applications?

• Hierarchical file systems have a preferred metaphor which is the tree.

What is the proper metaphor for LIS?

The tree is also the graphical metaphor of hierarchical file systems.

What is the graphical metaphor for LIS?

Knowing this is crucial for the acceptance of LIS in end-user applications.

• Geographical information systems also suffer the tyranny of the dominant decomposition. Here, the
dominant decomposition is in rigid thematic layers that inherit from plastic sheets of ancient map
design. These layers are omnipresent in the design and interface of GIS applications.

How can LIS abstract these layers, and still display layers when needed?

Mining geographical information is difficult because of the layers and because it must cope with
complex spatial relations.

What is the proper modeling of these relations that will permit efficient LIS operations, including
data-mining?

• Up to now, mining execution traces for bug tracking has used poor trace representations and ad hoc
algorithms.

How can the theoretical and practical framework of LIS help benefit from the wide range of
information of program development environments?

3. Scientific Foundations

3.1. Logics for Information Systems
Keywords: Syntax, interpretation, semantics, subsumption.
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Syntax Definition of the well-formed statements of a language. Statements are finite.

Interpretation Complete description of a world. Interpretations can be arbitrary mathematical con-
structs, and so can be infinite. Interpretations are models of statements, namely the worlds in
which the statement is true. Statements are features of interpretations, namely the statements that
are true in the world.

Semantics A binary relation between syntactic statements and interpretations.

Subsumption A relation which states that a property is more specific than another property.

Logic is the core of Logical Information Systems. However, this does not say everything because every
particular usage of logic is also a point of view on logic. For instance, logic in Logic Programing is not
the same as in Description Logic. This section describes the point of view on logic from information systems.

Logic is a wide domain that is concerned with formal representation and reasoning. The point of view on
logic in logical information systems can be characterized by two things. Firstly, we are interested in the
individual description of objects (e.g., files, pictures, program functions or methods), so that we need to
represent concrete domains and data structures. This entails two levels of statements: (1) statements about
objects, and (2) statements about the world (e.g., ontologies and subsumption). Subsumption helps to decide
when an object is an answer to a query. Secondly, we need automated reasoning facilities as the subsumption
must be decided between any object and a query in information retrieval. This forces us to only consider
decidable logics, unless consistency or completeness are weakened.

3.1.1. Properties of a Logic
A characteristic of logic is the ability to derive new statements from known statements. Such a derivation is
valid w.r.t. semantics only if every model of the known statements is also a model of the new statements. This
ability opens the room for reasoning, i.e. the production of valid statements by working at the syntactical level
only. Reasoning is formalized by inference systems (e.g., axioms and rules). An inference system is consistent
if it produces only valid statements; it is complete if it produces all valid statements. Reasoning is decidable if
a consistent and complete inference system can be made an algorithm.

3.1.2. Examples of Logics for Information Systems
Proposition logic is a possible logic for an information system, but it needs a lot of encoding for handling
structured information. Instead, non-standard logics have been defined for some structured domains.

A large family of logics that comes into our scope is the family of Description Logics (DL) [35], [36], which
have been widely studied, implemented, and applied in knowledge and information management. Moreover,
their semantic structure is especially well-suited to be used in a LIS. The semantics of proposition logic is
often exposed in terms of truth values and truth tables. In the opposite, the semantics of description logic is
defined in terms of sets of objects that are close to answers to a query. DL are, therefore, of a special interest
for the LIS team.

Another family of interest is categorial grammars. Many substructural logics come into this scope, among
which non-commutative linear logic or Lambek Calculus [45] that handle various concatenation principles (or
ordered conjunction) in categorial grammars where logic is used both for attaching formulas to objects and for
parsing seen as deduction.

At an empirical level, the categorial approach comes very close to the LIS approach. Categorial grammars
correspond to LIS contents, because they both attach formulas to objects, and sentence types correspond to
queries. The difference is that the answer to a LIS query is an unordered set, whereas a sentence generated
by a categorial grammar is an ordered sequence. We expect a cross-fertilization of both theories in the future,
especially in the LIS applications where the objects are naturally ordered.
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3.2. Concept Analysis
Keywords: Objects, concept, context, descriptors, extension, instance, intension, property.

Objects A set of distinguished individuals.
Descriptors A set of distinguished properties.
Context A set of objects associated with descriptors.
Instance An object is an instance of a descriptor if it is associated with it in a given context.
Property A descriptor is a property of an object if it is associated with it in a given context.
Extension The extension of a collection of descriptors is the set of their common instances. Extent is

a synonym.
Intension The intension of a collection of objects is the set of their common properties. Intent is a

synonym.
Concept Given a context, and extensions and intensions taken from it, a concept is a pair (E, I) of an

extension E and an intention I that are mutually complete; i.e., I is the intention of the extension,
and E is the extension of the intention.

3.2.1. Formal Concept Analysis
Formal Concept Analysis (FCA) is part of the mathematical branch of applied lattice theory [34], [37]. It can
be seen as a reformulation by Wille of Galois lattices [33] that emphasizes lattices as conceptual hierarchies
[50]. The mathematical foundations of FCA have been extensively studied by Ganter and Wille [39].

FCA mainly aims at the automatic construction of concepts and their classification according to a general-
ization ordering, given a flat representation of data. The adjective formal means that concepts are given a
mathematical definition, which reflects the usual philosophical meaning of a “concept”. The basic notions of
FCA are those of formal context, and formal concept.

A formal context is a binary relation between a set of objects, and a set of attributes. Through this relation
attributes can be seen as properties of objects, and reciprocally, objects can be seen as instances of attributes.
This is a very general settings that applies to various domains such as data analysis, information retrieval, data-
mining or machine learning. In all these domains, the objects of interest are described by sets of attributes,
and the objective is to relate in some way sets of objects and sets of attributes. In information retrieval a set of
attributes is a query, whose answers is a set of objects. In machine learning a set of objects is a set of positive
examples, whose characterization is a set of attributes.

A formal concept is the association of a set of objects, the extent, and a set of attributes, the intent. This comes
close to the classical definition of concept in philosophy, but in FCA the relationship between extent and intent
is formally defined. The extent must be the set of instances shared by all attributes of the intent; and the intent
must be the set of properties shared by all objects in the extent.

The fundamental theorem of FCA says that the set of all concepts forms a complete lattice when they are
ordered according to the set inclusion on extents (or intents). This is called the concept lattice, and it can be
computed automatically from the formal context. The concept lattice is the structure that is implicit in any
formal context. It contains all the information contained in the formal context; the latter can be rebuilt from
the former. In data analysis, the concept lattice permits a flexible classification of data (where a concept is a
class), because concepts are not organized as a strict hierarchy. In information retrieval and data-mining it is
used as a search space for answers.

3.2.2. Logical Concept Analysis
In Formal Concept Analysis (FCA) object properties are restricted to Boolean attributes. In many applications
there is a need for richer properties, where properties are not independent. For instance, if a book has been
published in 2000, it can be given the property year = 2000, and has then the implicit properties year in
1990..2000 and year in 2000..2010. This means that properties are statements about objects that can
be subject to reasoning, exactly like logical statements. Other examples of useful properties are strings and
string patterns, spatial descriptions for locating objects, or patterns over the programming type of functions
and methods.
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FCA has been extended by other authors to handle multi-valued contexts [39], but this extension takes the
form of a preprocessing stage that results in a standard formal context, and forgets all logical relations between
properties. Moreover it is limited in practice to valued attributes with finite domains of attributes. In 2000
we proposed a logical generalization of FCA, named Logical Concept Analysis (LCA) [9], [5], that is the
abstraction of FCA w.r.t. object descriptions and concept intents. This makes LCA an abstract component,
and makes FCA the composition of LCA with a logic component. LCA makes the theory of concept analysis
easily reusable in various applications.

For good composability of LCA and logics, they must agree on the specification of logics. What LCA needs
from a logic is:

• a language of formulas (or statements), L, for the representation of object descriptions and concept
intents,

• a procedure, v, for deciding the subsumption between 2 formulas; v means “is subsumed by”, “is
more specific than”, “entails”,

• a procedure, t, for computing the least common subsumer of 2 formulas; it is a kind of logical
disjunction,

• a formula, ⊥, that is the most specific according to subsumption (logical contradiction).

This specification provides everything required to extend fundamental results of FCA to LCA (formal context,
extent, intent, concept, complete lattice of concepts). For information retrieval and the expression of queries,
it is useful to add, to this specification, operations such as logical conjunction, and logical tautology (the most
general formula).

Any formal context defines a logic whose subsumption relation is isomorphic to the concept lattice that is
derived from the formal context. An interesting result is that the contextualized logic (the logic defined by the
logical context) is a refinement or extension of the logic used by LCA. Everything true in the logic is also true
in the contextualized logic (because it is eternal truth); and everything true only in the contextualized logic says
something that is true in the context, but not in general (because it is instant truth). Thus, contextualized logic
forms the basis for data-mining and machine learning tasks, whose aim is to discover outstanding regularities
in a given context [9], [6].

3.3. Logical Querying, Navigation, and Data-mining
Keywords: Querying, data-mining, navigation.

Querying The process that takes a query (e.g., a logical formula), and returns the collection of objects
that satisfy the query (e.g., the extent of the query).

Navigation The process of moving from place to place, where each place indicates objects they
contain (i.e. local objects) and other places where it is possible to move (i.e. neighbouring
places).

Data-mining The process of extracting outstanding regularities from data (e.g., a context) hoping to
discover new and useful knowledge.

In most information systems, querying and navigation are two disconnected means for information retrieval.
With querying, users formulate queries which belong to more or less complex querying languages, from simple
words as in Google to highly structured languages like SQL. The system returns a set of answers to the query.
This permits expressive search criteria over large amounts of data, but lacks interactivity because the dialogue
is only one-way. If the answers are not satisfying, users have to imagine new queries and formulate them, which
requires a priori knowledge of both querying language and data. With navigation, users move from place to
place following links. The most common systems are folder hierarchies (e.g., file systems, bookmarks, emails),
and hypertext. As opposed to querying, navigation provides interactivity by making suggestions at each step,
but offers limited expressivity because navigation structures are rigid. In a hierarchy, selection criteria are
presented in a fixed order. For instance, if pictures are classified first by date, then by type, one cannot easily
find all landscape pictures.
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The need for combining querying and navigation has already been recognized. Most proposals, however, are
unsatisfying. Indeed, either querying and navigation cannot be mixed freely in a same search, or consistency
of querying is not maintained. An example of the former is SFS [40], once a querying step is done, there is
no more navigation. An example of the latter is HAC [42], some query answers may not satisfy the query.
A proposal based on FCA has not these drawbacks [41], and we have generalized it to work within LCA,
which allows us to use logical formulas for object description and queries [5], [9]. Logic brings expressivity in
querying, and concept analysis brings the concept lattice as a navigation structure (i.e., navigation places are
formal concepts). The advantages of this navigation structure is that (1) it is automatically derived from data,
the logical context (see motto 1), (2) it is complete as navigation alone makes it possible to reach any object
(see motto 3), and (3) it is flexible because selection criteria can be chosen in any order, thus allowing user to
express their preferences (see motto 2). Querying and navigation can be freely mixed (see motto 4) in a same
search because every logical formula points to a formal concept, and every formal concept is labelled by a
logical formula. Put concretely, this means that a user can at each step of his search: either modify by hand the
current query and reach a new place, or follow a suggested link that will modify the current query and reach a
new place.

The critical operation is the computation of navigation links, which correspond to edges in the concept lattice.
Indeed, the worst-case time complexity for computing the concept lattice is exponential in the number of
objects, which makes it intractable in most interesting cases. We demonstrated both in theory and practice that
this computation is not necessary. A key feature of LIS is that its semantics is expressed in terms of LCA,
though it is not required to actually build the concept lattice. This is opposed to most (all?) previous proposals
for using LCA in information retrieval.

The concept lattice upon which our navigation is based is also a rich structure for data-mining and machine
learning [44]. Here again, we have combined existing techniques with logic [9], [6], and applied them to the
automatic classification of emails [38], and the prediction of the function of proteins from their sequence [6].

3.4. Genericity and Components
Keywords: Abstraction, component, composability, reusability.

Abstraction a mechanism and practice to reduce and factor out details so that one can focus on few
concepts at a time.

Reusability the likelihood a segment of structured code can be used again to add new functionalities
with slight or no modification. Reusable code reduces implementation time, it increases the
likelihood that prior testing and use has eliminated bugs and it localizes code modifications when
a change in implementation is required.

Composability a system design principle that deals with the inter-relationships of components. A
highly composable system provides recombinant components that can be selected and assembled
in various combinations to satisfy specific user requirements.

Component an object written to a specification. It does not matter what the specification is as long as
the object adheres to the specification. It is only by adhering to the specification that the object
becomes a component and gains features like reusability, composability, and abstraction.

The application scope of Logical Information Systems is very large, and we do not expect that one design
(e.g., one logic) will fit all possible applications. That is why we emphasize genericity, and we use the plural
in “logical information systems”. The need for genericity is not limited to theoretical results and design, but
extends to the concrete implementation of LIS.

Genericity requires programming facilities for abstraction, composability, and reusability of software compo-
nents.
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In LIS, abstraction is of the upper importance in the design of logical concept analysis; LCA is an abstraction
of FCA. It is also at the heart of the logic functor framework and of its implementation; a logic functor is
an abstraction of a logic (see Section 3.5). Reusability and composability are the expected outcomes of this
framework. It is expected to make things easier to the designer of a LIS application. Composability is also
at the heart of the very notion of formal context, and thus at the heart of concept analysis. Indeed, the flat
structure of formal concepts makes it trivial to extend a context or merge two contexts, and the burden of
giving a structure to the context is left to the construction of the concept lattice.

A generic implementation of LIS can be seen as a central component that is parameterized by several
application-dependent components: at least a logic, and a transducer for importing data. These parameter
components can be linked at compilation time (plugins). The central component as well as parameter
components can themselves be the result of the composition of smaller components.

3.5. Logic Functors
Keywords: Logics, composability, genericity.

The genericity of LCA and LIS w.r.t. logic implies that for every new application a logic has to be found
for describing objects in a logic context. Either a suitable logic is already known, or it must be created.
Creating a logic requires designing a syntax, a semantics, algorithms for subsumption and other procedures,
and proving that these algorithms are correct w.r.t. semantics. This definitely requires logic expertise and
programming skills, especially for the subsumption procedure that is a theorem prover for which consistency
and completeness must be proven. However, application developers and logic experts are likely to be different
persons in most cases. Moreover, creating new logics from scratch for each application is unsatisfying w.r.t.
reusability as these logics certainly share common parts. For instance, many applications need propositional
reasoning, only changing the notion of what is a propositional variable.

We introduced high-level logic components, named logic functors [8], [5], in order to make the creation of a
new logic the mere composition of abstract and reusable components. All logics share a common specification
that contains all useful procedures (e.g., subsumption); logic functors are functions from logics to logics,
implemented as parameterized modules. Some logic functors take no parameter, and provide stand-alone but
reusable logics: this is the case of concrete domains such as integers or strings. Other logic functors take one
or several logics as parameters. For instance the functor Prop(X) is propositional logic abstracted over its
atoms. This makes it possible to replace atoms in propositional logic by the formulas of another logic (e.g.,
valued attributes, terms from a taxonomy).

Logics are built by applying logic functors to sub-logics, which can themselves be defined as a composition
of logic functors. For instance, the propositional logic where atoms are replaced by integer-valued attributes
(and allowing for integer intervals) can be defined by the expression

L = Prop(Set(Prod(Atom,Interval(Int)))).

This results in a concrete software component L that is fully equipped with implementations of the logic
specification procedures. This component can then be composed itself with LCA or a LIS system.

3.6. Categorial Grammars
Keywords: Categorial grammar, identification in the limit.

Categorial grammars are used for natural language modeling and processing; they mainly handle syntactic
aspects, but Lambek variants also have a close link with semantics and Lambda-calculus. Formally, a
categorial grammar is a structure G = (Σ, I, S) where: Σ is a finite alphabet (the words in the sentences);
I is a function that maps a finite set of types to each element of Σ (the possible categories of each word, a
lexicon); S is the main type associated to correct sentences. A k-valued categorial grammar is a categorial
grammar where, for every word a ∈ Σ, I(a) has at most k elements. A rigid categorial grammar is a 1-valued
categorial grammar.
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Each variant of categorial grammar formalism is also determined by a derivability relation on types ` (which
can be seen as a subcase of linear logic deduction in the case of Lambek grammars). Given a categorial
grammar G = 〈Σ, I, S〉, a sentence w on the alphabet Σ belongs to the language of G whenever the words in
w can be assigned by I a sequence of types that derive (according to `) the distinguished type S.

A simplified example is G1= (Σ1, I1, S) with Σ1 = {John,Mary, likes} I1 = {John 7→ {N},
Mary 7→ {N}, likes 7→ {N r(S/N)}} the sentence “John likes Mary” belongs to the language of
G1 because N,N r(S/N), N ` S due to successive applications of the two elimination rules : X, XrY ` Y
and Y, Y/X ` Y . Type constructors / andrcan be seen as oriented logic implications, the elimination rules
are analogues of the “Modus Ponens” logic rule. An interesting issue is how the underlying rules or logics
may compose (this is the design of logic functors) to deal with more fine-grained linguistic phenomenon.

Since they are lexicalized, such grammar formalisms seem well-adapted to automatic acquisition or comple-
tion perspectives. Such studies are performed in particular in Gold’s paradigm.

Identification in the limit in the model of Gold consists in defining an algorithm on a finite set of (possibly
structured) sentences that converges to obtain a grammar in the class that generates the examples. Let G be a
class of grammars that we wish to learn from positive examples; let L(G) denote the language associated with
a grammar G; a learning algorithm is a function φ from finite sets of (structured) strings to G, such that for
any G ∈ G and 〈ei〉i∈N any enumeration of L(G), there exists a grammar G′ ∈ G such that L(G′) = L(G)
and n0 ∈ N such that ∀n > n0 φ({e0, ..., en}) = G′.

4. Application Domains
4.1. Geographical Information Systems

Participants: Olivier Bedel, Olivier Ridoux, Sébastien Ferré, Erwan Quesseveur, François Le Prince.

Geographical Information Systems (GIS) is an important, fast developing domain of Information technology,
and it is almost absent from INRIA projects. It is especially important for local communities (e.g. region and
city councils).

Geographical information systems [46] handle information that are localized in space (geolocalized). GIS
form a fast-developing area which incorporates various technologies such as web, databases, or imaging. One
characteristic of GIS is their organization as layers. This is inherited from the plastic sheets that where used
until recently for drawing maps. A layer represents the road system, another the fluvial system, another the
relief, etc. This is another instance of the tyranny of the dominant decomposition, and is not satisfactory: to
which layer belong bridges, into which layer can we represent a multimodal network? Moreover, mining GIS
is known to be difficult for the same reason; the layer structure makes inter layer relationships difficult to
discover.

The first advantage of applying LIS to GIS is to allow cross-layer navigation. Another advantage is to permit
a logical handling of scales. In current GIS systems, scales are treated as different layers, and it is difficult
to keep the consistency between all layers that describe the same object. Another advantage that we have
observed in a preliminary work is that LIS helps cleaning a data-base. This was not expected, and opens an
interesting research area.

4.2. Mining Software Repositories
Participants: Peggy Cellier, Mireille Ducassé, Olivier Ridoux.

There exist numerous repositories related to the development of software: for example source versions gener-
ated by control systems, archived communications between project personnel, defect tracking systems, compo-
nent libraries and execution traces. They are used to help manage the progress of software projects. Software
practitioners and researchers are beginning to recognize the potential benefit of mining this information to
support the maintenance of software systems, improve software design/reuse, and empirically validate novel
ideas and techniques.
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Logical information systems seem particularly adapted to mine these repositories. Indeed, the repositories
contain heterogeneous and incomplete information. Their size is too large to be directly handled by human
beings and it is still manageable by the current implementations of LIS. The LIS team currently focuses on
component retrieval and execution traces cross-checking.

5. Software
5.1. LISFS

Participants: Yoann Padioleau, Olivier Ridoux [contact point].

The main objective of a LIS is not to go faster; it is to go easier. This must be evaluated by experimenting
the use of LIS in various contexts. However, the price for an easier usage must not be too high compared to
more classical storage means such as a file system. At the same time we want to promote a file system level
implementation of LIS so that every application that uses the file system interface could use a LIS.

LISFS is a file system that implements LIS under the Linux file system interface [13], [12]. It uses the whole
usual file system technology (e.g. caching, journaling) to offer reactivity, safety, robustness, etc. At the same
time, it is not intimately attached to Linux technology because it is programmed at the user level, and it uses
the FuseFS bridge to redirect file system calls to the user level.

LISFS manages a set of objects described with attributes that may be valued. The attributes of an object
form a logic conjunction, disjunction and negation can be expressed in queries. More sophisticated logical
descriptions can be embedded in the attributed values. For instance, title:contains "logic" is an attribute
whose value is contains "logic" and refers to a logic of string pattern matching. Objects can be created
and deleted (e.g. shell commands touch f and rm f ); their attributes can be changed anytime (e.g. shell
command mv f1 f2; and new attributes can be created anytime (e.g. shell command mkdir a).

LISFS response time grows with the number of objects, the number of attributes, and the complexity of their
values. We have proved, under hypotheses which are met in practice, that LISFS response time to queries
is linear with the number of objects. However, this is not enough in practice, and the ideal complexity is
amortized constant time. This is what we try to achieve through the use of file system and database technologies
like caches, indexes, and journals. In its current state LISFS can manage up to 1 000 000 objects×attributes
with affordable response time for queries. However, the response time for updates is not yet as good as we
wish, and this is a track for improvement in the future. Similarly, 100 000 objects is good enough for a personal
computer, but is not enough for some professional usage; this is also something we wish to improve.

An important service of LISFS is to permit navigation, querying and updates inside files. This is the part-of-
file service, PofFS [47][12]. The idea is that a file is considered as a composition of subparts; the subparts are
to the file as files are to a mount point. This is a way to overcome artificial constraints that are often imposed
by applications. For instance, it is often the case that methods of the same class must be textual neighbours
in a source file. Sometimes what is desired is to see together all methods with the same role, say print. PofFS
permits that. In fact, PofFS is just the right thing to do in many applications where the goal is not to find one
answer but to display together all answers. This is the case of GIS applications, for instance.

5.2. GEOLIS
Participant: Olivier Bedel.

GEOLIS is a prototype combining a Logical Information System (LIS) and webmapping tools for geographical
data exploration. GEOLIS takes the form of a web application. Server-side, GEOLIS relies on LISFS to
organize of the data and on the webmapping engine MapServer to produce a map representation of data
selection. Client-side, the GEOLIS user interface provides three components: 1) a query box similar to
web search engines querying interfaces, 2) a map area, and 3) a navigation tree gathering navigation links.
Navigation links can be followed to reduce (resp. enlarge) the current selection of data visible on the map by
refining (resp. generalizing) the current query written in the query box. Online demo of GEOLIS works with
a partial dataset concerning rodents distribution in Soudano-Sahelian Africa. It aims at helping geographs in
the research of factors impacting on rodents distribution.

http://lfs.irisa.fr/download/
http://lfs.irisa.fr/wiki/geolis/
http://lfs.irisa.fr/demo-area/geolis_test/Geolis.phtml
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5.3. Camelis
Participant: Sébastien Ferré.

Camelis is a stand-alone application that allows to store, retrieve and update objects through a graphical
interface. Its main purpose is to experiment with the LIS paradigm. In particular, it has been very useful for
refining the query-answer principle in special circumstances (e.g. when there are many answers, or when there
are few answers). It is currently used as a personal storage device for handling photos, music, bibliographical
references, etc, up to thousands of objects. It implements as closely as possible the LIS paradigm. It is generic
w.r.t. logics, and is compatible with our library of logic functors, LogFun (see Section 5.4). It is available on
Linux and Windows, and comes with a user manual.

5.4. LogFun
Participant: Sébastien Ferré.

The formal definition of a LIS is generic with respect to the logic used for object descriptions and for queries.
The counterpart is that it is up to the user to design and implement a logic solver to plug in a LIS. This is too
demanding on the average user, and we have developed a framework of logic functors that permits to build
certified logic solvers (see Section 3.5).

LogFun is a library of logic functors and a logic composer. A user defines a logic using the logic functors,
and produces a certified software implementation of the logic (i.e., parser, printer, prover) by applying
the logic composer to the definition. For instance, using a functor Interval for reasoning on intervals
(e.g. x ∈ [2, 5] =⇒ x ∈ [0, 10]), and a functor Prop for propositional reasoning (e.g. a ∧ b =⇒ a), a user can
define logic Prop(Interval). In this logic, a theorem like x ∈ [2, 5] ∨ x ∈ [7, 9] =⇒ x ∈ [0, 10] can be proven.
Note that [2, 5] ∪ [7, 9] is not an interval, so that Prop(Interval) is an actual extension over Interval.

What the logic composer does when building logic Prop(Interval) is to compose the solver of Interval and the
generic solver of Prop, and build a solver for Prop(Interval). It also type-checks Prop(Interval) to produce its
certificate using the certificates of Interval and Prop. In this example, the certificate says that Prop(Interval)
is complete: everything that could be deduced from the meaning of Prop(Interval) can be proved by its solver.
In other circumstances, the certificate indicates that the logic defined by the user is incomplete, w.r.t. the
semantics and solvers that come with the functors. In this case, the certificate also indicates what hypotheses
are missing for completeness; this may help the user to define a more complete variant of its logic.

Logic functors offer basic bricks and a building rule to safely design new logics. For instance, in a recent
application of LIS to geographical information system, a basic reasoning capability on locations was needed.
The designer of the application, not a LIS or LogFun author, could build a relevant ad hoc logic safely and
rapidly.

6. New Results

6.1. Dynamic Taxonomies: from Taxonomies to Logics
Participants: Sébastien Ferré, Olivier Ridoux.

Like logical information systems, dynamic taxonomies [48] have been proposed as a solution for combining
querying and navigation, offering both expressivity and interactivity. Navigation is based on the filtering of
a multidimensional taxonomy w.r.t. query answers, which helps users to focus their search. We show that
properties that are commonly used only in queries can be integrated in taxonomies, and hence in navigation, by
the use of logics [31]. Hand-designed taxonomies and concrete domains (e.g., dates, strings) can be combined
so as to form complex taxonomies. For instance, valued attributes can be handled, and different roles between
documents and locations can be distinguished.

http://www.irisa.fr/lande/ferre/camelis/
http://www.irisa.fr/lande/ferre/logfun/
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6.2. CAMELIS: Organizing and Browsing a Personal Photo Collection with a
Logical Information System
Participant: Sébastien Ferré.

Since the arrival of digital cameras, many people are faced to the challenge of organizing and retrieving the
overwhelming flow of photos their life produces. Most people put no metadata on their photos, and we believe
this is because existing tools make a very limited use of them. We present a tool, Camelis, that offers users
with an organization of photos that is dynamically computed from the metadata, making worthwhile the effort
to produce it. Camelis is designed along the lines of Logical Information Systems (LIS), which are founded
on logical concept analysis. Hence, (1) an expressive language can be used to describe photos and query
the collection, (2) manual and automatic metadata can be smoothly integrated, and (3) expressive querying
and flexible navigation can be mixed in a same search and in any order. This presentation is illustrated by
experiences on a real collection of more than 5000 photos [29].

6.3. The Efficient Computation of Complete and Concise Substring Scales
with Suffix Trees
Participant: Sébastien Ferré.

Strings are an important part of most real application multi-valued contexts. In the framework of formal
concept analysis, their conceptual treatment requires the definition of substring scales, i.e., sets of relevant
substrings, so as to form informative concepts. However these scales are either defined by hand, or derived in
a context-unaware manner (e.g., all words occuring in string values). We present an efficient algorithm based
on suffix trees that produces complete and concise substring scales [30]. Completeness ensures that every
possible concept is formed, like when considering the scale of all substrings. Conciseness ensures the number
of scale attributes (substrings) is less than the cumulated size of all string values. This algorithm is integrated
in Camelis, and illustrated on the set of all ICCS paper titles.

6.4. A Parameterized Algorithm to Explore Formal Contexts with a Taxonomy
Participants: Peggy Cellier, Sébastien Ferré, Olivier Ridoux, Mireille Ducassé.

Formal Concept Analysis (FCA) is a natural framework to learn from examples. Indeed, learning from
examples results in sets of frequent concepts whose extent contains mostly these examples. In terms of
association rules, the above learning strategy can be seen as searching the premises of rules where the
consequence is set. In its most classical setting, FCA considers attributes as a non-ordered set. When attributes
of the context are partially ordered to form a taxonomy, Conceptual Scaling allows the taxonomy to be taken
into account by producing a context completed with all attributes deduced from the taxonomy. The drawback,
however, is that concept intents contain redundant information.

We have proposed a parameterized algorithm, to learn rules in the presence of a taxonomy. It works on
a non-completed context. The taxonomy is taken into account during the computation so as to remove all
redundancies from intents. Simply changing one of its operations, this parameterized algorithm can compute
various kinds of concept-based rules. Two instantiations of the parameterized algorithm have been proposed
to learn rules as well as to compute the set of frequent concepts [25], [19].

6.5. Formal Concept analysis enhances Fault Localization in Software
Participants: Peggy Cellier, Mireille Ducassé, Sébastien Ferré, Olivier Ridoux.

The current trend in debugging and testing is to cross-check information collected during several executions.
Jones et al. [43], for example, propose to use the instruction coverage of passing and failing runs in order
to visualize suspicious statements. The implicit underlying technique is to search for association rules which
indicate that executing a particular source line will cause the whole execution to fail. This technique, however,
has limitations, for instance at least one statement must be considered as faulty .
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We have proposed a process that combines association rules and formal concept lattices to give a relevant
way to navigate into the source code of faulty programs. We consider more expressive association rules where
several lines imply failure, it allows to alleviate some limitations of the Jones et al’s method. Formal Concept
Analysis (FCA) is used to analyze the resulting numerous rules in order to improve the readability of the
information contained in the rules. Casting the fault localization problem in the FCA framework helps analyze
existing approaches, as well as alleviate some of their limitations. [24].

6.6. Observational Semantics of Prolog
Keywords: Debugging, Execution Trace semantics, Programming Environment, Prolog, Software Engineer-
ing.

Participant: Mireille Ducassé.

This work specifies an observational semantics of Prolog and gives an original presentation of the Byrd’s box
model. The approach accounts for the semantics of Prolog tracers independently of a particular implementa-
tion. Traces are, in general, considered as rather obscure and difficult to use. The proposed formal presentation
of a trace constitutes a simple and pedagogical approach for teaching Prolog or for implementing Prolog trac-
ers. It constitutes a form of declarative specification for the tracers. Our approach highlights the qualities of
the box model which made its success, but also its drawbacks and limits. As a matter of fact, the presented
semantics is only one example to illustrate general problems relating to tracers and observing processes. Ob-
serving processes know, from observed processes, only their traces. The issue is then to be able to reconstitute
by the sole analysis of the trace the main part of the observed process, and if possible, without any loss of
information[28].

This activity is done in collaboration with Pierre Deransart from the INRIA Rocquencourt team Contraintes,
and Gérard Ferrand from the University of Orléans.

6.7. Tracer Driver and Dynamic Analyses of CLP(FD)
Keywords: Constraint Logic Programming, Debugging, Execution Monitoring, Execution Trace Analysis,
Execution Tracing, Execution Visualization, Programming Environment, Software Engineering.

Participant: Mireille Ducassé.

Tracers provide users with useful information about program executions. In this article, we propose a “tracer
driver”. From a single tracer, it provides a powerful front-end enabling multiple dynamic analysis tools to
be easily implemented, while limiting the overhead of the trace generation. The relevant execution events
are specified by flexible event patterns and a large variety of trace data can be given either systematically or
“on demand”. The proposed tracer driver has been designed in the context of constraint logic programming;
experiments have been made within GNU-Prolog. Execution views provided by existing tools have been
easily emulated with a negligible overhead. Experimental measures show that the flexibility and power of
the described architecture lead to good performance.

The tracer driver overhead is inversely proportional to the average time between two traced events. Whereas
the principles of the tracer driver are independent of the traced programming language, it is best suited for
high-level languages, such as constraint logic programming, where each traced execution event encompasses
numerous low-level execution steps. Furthermore, constraint logic programming is especially hard to debug.
The current environments do not provide all the useful dynamic analysis tools. They can significantly benefit
from our tracer driver which enables dynamic analyses to be integrated at a very low cost[20].

This activity is done in collaboration with Ludovic Langevine from Mission Critical IT, Belgium.

6.8. Using polyhedral abstractions in constraint-based testing
Keywords: Constraint-based automatic test data generation, constraint propagation, linear relaxation.
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Participant: Mireille Ducassé.

Constraint-Based Testing (CBT) is the process of generating test cases against a testing objective by using
constraint solving techniques. In CBT, testing objectives are given under the form of properties to be satisfied
by program’s input/output. Whenever the program or the properties contain disjunctions or multiplications
between variables, CBT faces the problem of solving non-linear constraint systems. Currently, existing
CBT tools tackle this problem by exploiting a finite-domains constraint solver. But, solving a non-linear
constraint system over finite domains is NP_hard and CBT tools fail to handle properly most properties to
be tested. In this work, we introduced a CBT approach where a finite domain constraint solver is enhanced
by Dynamic Linear Relaxations (DLRs). DLRs are based on linear abstractions derived during the constraint
solving process. They dramatically increase the solving capabilities of the solver in the presence of non-linear
constraints without compromising the completeness or soundness of the overall CBT process. We implemented
DLRs within the CBT tool TAUPO that generates test data for programs written in C and got initial results over
a few (academic) C programs [27]. Extending this approach to handle loops that depend on input variables
led us to combine narrowing techniques within constraint combinators by defining a new constraint language
inspired from the imperative programming style [26].

This activity is done in collaboration with Tristan Denmat and Arnaud Gotlieb from the IRISA Lande team.

6.9. GEOLIS: A Logical Information System for Geographical Data
Participants: Olivier Bedel, Sébastien Ferré, Olivier Ridoux.

Today, the thematic layer is still the prevailling structure in geomatics for handling geographical information.
However, the layer model is rigid: it implies partitionning geographical data in predefined categories and using
the same description schema for all elements of a layer. Futhermore, Geographical Information Systems (GIS)
rely exclusively on querying for geographical information retrieval. Using Logical Information Systems (LIS)
paradigm for information management and retrieval, we propose a more flexible organisation of vectorial
geographical data at a thiner level since it is centered on the geographical object. Our data model allows to
consider every collections of geographical objects that share a common description. Geographical objects
descriptions mix spatial and non-spatial properties that are handled by specialized logics. Especially, a spatial
logic has been designed to test the inclusion of the different kinds of geometrical description (i.e. polygon, line
and point) and to reason on derived properties such as the area or the length [21]. Our navigation model allows
to freely combine querying and navigation on geographical data. More particularly, the navigation model relies
on three different views over the geographical data: 1) the current selection is described intentionnaly by the
current query, 2) its extension is represented graphically on the geographical map, and 3) the navigation tree
gathers the properties describing objects of the current selection. These properties also serve as navigation
links to refine or generalize the current query. The data and the navigation models have been implemented in
the GEOLIS prototype, which has been used to lead experiments on a real dataset [17].

6.10. Pregroup Calculus as a Logical Functor
Participants: Annie Foret, Sébastien Ferré.

The concept of pregroup was introduced by Lambek for natural language analysis, with a close link to
non-commutative linear logic. Pregroup grammars are a context-free grammar formalism introduced as a
simplification of Lambek calculus. We reformulate the pregroup calculus so as to extend it by composition
with other logics and calculii.The cut elimination property and the decidabilityproperty of the sequent calculus
proposed in the article are shown. Properties of composed calculii are also discussed [32].

6.11. Fully Lexicalized Pregroup Grammars
Participant: Annie Foret.
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The pregroup formalism is interesting for several reasons: the syntactical properties of words are specified
by a set of types like the other type-based grammar formalisms ; as a logical model, compositionality is easy
; a polytime parsing algorithm exists. However, this formalism is not completely lexicalized because each
pregroup grammar is based on the free pregroup built from a set of primitive types together with a partial
order, and this order is not lexical information. In fact, only the pregroup grammars that are based on primitive
types with an order that is equality can be seen as fully lexicalized. We show here how we can transform, using
a morphism on types, a particular pregroup grammar into another pregroup grammar that uses the equality as
the order on primitive types. This transformation is at most quadratic in size (linear for a fixed set of primitive
types), it preserves the parse structures of sentences and the number of types assigned to a word [23].

6.12. Learnability of Categorial Grammars
Participant: Annie Foret.

In [16] the Learnability of Pregroup Grammars is investigated. This paper focuses on the learnability by
positive examples in the sense of Gold of Pregroup Grammars. In a first part, Pregroup Grammars are presented
and a new parsing strategy is proposed. Then, theoretical learnability and non-learnability results for subclasses
of Pregroup Grammars are proved. In the last two parts, we focus on learning Pregroup Grammars from
a special kind of input called feature-tagged examples. A learning algorithm based on the parsing strategy
presented in the first part is given. Its validity is proved and its properties are examplified.

In [18], recent results on the acquistion of the syntax of natural languages are presented, from the point of view
of the theory of grammatical inference. Given a class of possible grammars, the objective is to identify, from
a set of positive examples, a grammar in the class which produces the examples. The Gold model formalises
the learning process and gives stringent criteria of its success: when does there exist an algorithm producing a
target grammar ? what kind of structure should the examples have (strings of words, strings of tagged words,
trees) ? >From a theoretical point of view, our results establish the learnability or the unlearnability of various
classes of categorial grammars. From a practical perspective, these results enable the extraction of syntactic
information from real data. Finally, we discuss the interest of this approach for modelling child language
acquisition and for automated induction of grammars from corpora.

7. Other Grants and Activities

7.1. International Collaborations
Daniela Bargelli, from McGill Canada, has been invited for three months in the LIS project. The collaboration
involves the pregroup formalism and the development of actual pregroup grammars for some choosen natural
languages, French in particular. D. Bargelli and A. Foret have organized a meeting around Lambek formalisms
the day after the TALN’07 conference in Toulouse (details can be found here).

7.2. National Collaborations
• The LIS team has a contract with Région Bretagne in collaboration with the laboratory RESO of the

University of Rennes 2, for the funding of O. Bedel’s PhD.

• Annie Foret is

– external collaborator of LINA (research lab. Nantes), in TALN team (Natural Language
Processing).

– member of a project in “Maison des sciences de l’homme” Lille (MSH) on “Apprentissage
naturel et artificiel de langages naturels et artificiels”

– INRIA ARC Mosaique member, on “ modèles syntaxiques de haut niveau” (2006,2007)

– member of “Agence Universitaire de la Francophonie” (AUF) , LTT network on “Lexi-
cologie, terminologie et traduction”

http://www.irisa.fr/prive/foret/RFL.html
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8. Dissemination

8.1. Scientific Popularization: a short film to introduce logical information
systems
Participants: Olivier Bedel, Peggy Cellier, Sébastien Ferré.

In the framework of the popular science short-film festival of Rennes (TCM 2007), the members of the team
LIS have written and directed a short-film of 4 min. It briefly describes the mechanism of logical information
systems in a pictorial and amusing manner. The short film is entitled "A la recherche des photos insolites..."
(Seeking the funny pictures...) and has been shown at the festival and the science fest. The short-film has also
been used to present the research area of the team to several groups of students.

8.2. Involvement in the Scientific Community
• Olivier Ridoux has been a member of the program committee of ICCS’07 (Int. Conf. on Conceptual

Structures). He is in the editorial board of Interstices. He also has been a member in the HDR
committee of Laure Bertille on “Quality awareness in data management and mining”, in the
PhD committee of Julien Pley on “Protocoles d’accord pour la gestion d’une grille de calcul
dynamique”, and of Gwenaelle Marquet on “Réalisation d’une ontologie du glioblastome par
intégration d’ontologies biologiques et médicales”.

• Mireille Ducassé has served in the program committees of JFPC’07 (Journées Francophones de
Programmation par Contraintes), Rocquencourt, France; TAIC’07 (Testing Academic & Industrial
Conference), Windsor, UK and PADLE’08 (International Symposium on Practical Aspects of
Declarative Languages), San Francisco, USA.

• Sébastien Ferré has been a member of the program committees of ICFCA’07 (Int. Conf. Formal
Concept Analysis), and CLA’07 (Concept Lattices and their Applications). He also served as an
external reviewer of the International Journal of Foundations in Computer Science (IJFCS), and the
DEXA Workshop on Advances in Conceptual Knowledge Engineering (ACKE).

• Annie Foret has been a program committee member of Formal Grammar 2006 International Confer-
ence, and of CAP 2006 French Conference on Learning (Conférence francophone sur l’apprentissage
automatique). She has also been a member in the following Phd Committee : “Acquisition de gram-
maires lexicalisées pour les langues naturelles.” (“Acquisition of lexicalized grammars for natural
languages”) by Erwan Moreau, Nantes 2006.

8.3. Teaching
• Olivier Ridoux is the head of IFSIC (Institut de Formation Supérieure en Informatique et Commu-

nication - the Computing Science department at University of Rennes 1).

Olivier Ridoux teaches compilation, logic and constraint programming, as well as software engineer-
ing at the Master level of IFSIC. He also teaches an introduction to computability and complexity at
the Licence level, which led to the publication of a book [15].

He also published in Interstices a survey on the 2007 TIPE1 about “Variability, limit, and stability in
Computer Science”.

1TIPE (Travaux d’Initiative Personelle Encadrés) are proposed to undergraduate students as an introduction to research. TIPE subjects
are defined nationally every year. The 2007 subject was “Variability, limit, and stability”.

http://interstice.info
http://interstices.info/jcms/c_25363/variabilite-limite-stabilite-en-informatique
http://interstices.info/jcms/c_25363/variabilite-limite-stabilite-en-informatique
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• Mireille Ducassé is the head of the computer science department of the INSA of Rennes since March
2007. She is an elected member of the board of directors of the Insa of Rennes. She has been the
chair of the committee in charge of the employment of teaching and research staff in computer
science at the Insa of Rennes (“commission de spécialistes”) until May 2007. She is a member of
two other such committees: at the University of Rennes 1 and the University of “La Réunion”. She
has been responsible of the student exchange program for the computer science department of the
Insa of Rennes until October 2007. Since November 2007 she is an elected member of the “Conseil
National des Université (CNU) 27e section”.

At Insa, she teaches compilation and formal methods for software engineering (with the “B formal
method”) at Master 1 level of Insa. She leads an exercise of participatory design based on the work
of Wendy Mackay from the “In Situ” project of Inria Futurs. She contributes to a course on risk
analysis at Licence 2 level.

• Sébastien Ferré teaches programming in various languages (Objective Caml, Scheme, Mathematica,
Java), and algorithmics of graphs and sequences. The former is in the form of an initiation to
programming (L1 Physics-Chemistry, L2 Miage, M1 Bioinformatics). The latter concerns M1
students. He is also co-responsible of the 1st year of a master in bioinformatics.

• Annie Foret teaches university courses including formal logic, functional programming, and
databases.

• Peggy Cellier teaches Java, databases and data mining at the INSA of Rennes.
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