ABSTRACT NUMERATION SYSTEMS

Michel Rigo

Department of Mathematics University of Liège

Journées Montoises d'Informatique Théorique à Rennes, 2006

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

caucal@irisa.fr

Cher Michel,

dans le cadre des Journées Montoises d'informatique théorique qui auront lieu à Rennes fin août-début septembre : http://www.irisa.fr/JM06

Véronique et moi-même avons le plaisir de t'inviter à venir faire un exposé de synthèse (45 minutes) sur tes travaux.

WHERE IT COMES FROM

MOTIVATION

ABSTRACT NUMERATION SYSTEMS

FIRST RESULTS

ANOTHER FORMALISM

TOWARDS A COBHAM'S THEOREM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

REAL NUMBERS

INTEGER BASE NUMERATION SYSTEM, $k \ge 2$

$$n = \sum_{i=0}^{\ell} c_i k^i$$
, with $c_i \in \Sigma_k = \{0, \dots, k-1\}, c_\ell \neq 0$

Any integer *n* corresponds to a word rep_k(*n*) = $c_{\ell} \cdots c_0$ over Σ_k .

DEFINITION

A set $X \subseteq \mathbb{N}$ is *k*-recognizable if $\operatorname{rep}_k(X) \subseteq \Sigma_k^*$ is a regular language (accepted by a DFA).

Theorem (Cobham '69)

Let $p, q \ge 2$ be two multiplicatively independent integers. If $X \subseteq \mathbb{N}$ is both p- and q-recognizable, then X is ultimately periodic.

INTEGER BASE NUMERATION SYSTEM, $k \ge 2$

$$n = \sum_{i=0}^{\ell} c_i k^i$$
, with $c_i \in \Sigma_k = \{0, \dots, k-1\}, c_\ell \neq 0$

Any integer *n* corresponds to a word rep_k(*n*) = $c_{\ell} \cdots c_0$ over Σ_k .

DEFINITION

A set $X \subseteq \mathbb{N}$ is *k*-recognizable if $\operatorname{rep}_k(X) \subseteq \Sigma_k^*$ is a regular language (accepted by a DFA).

THEOREM (COBHAM '69)

Let $p, q \ge 2$ be two multiplicatively independent integers. If $X \subseteq \mathbb{N}$ is both p- and q-recognizable, then X is ultimately periodic.

・ロト・母・・ヨ・・ヨー うへの

DIVISIBILITY CRITERIA

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable for any $k \ge 2$.

VARIOUS PROOF SIMPLIFICATIONS AND GENERALIZATIONS

G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point,

- C. Michaux, R. Villemaire, A. Bès, J. Bell, J. Honkala,
- S. Fabre, C. Reutenauer, A.L. Semenov, L. Waxweiler, ...

NON STANDARD NUMERATION SYSTEMS

A strictly increasing sequence $(U_k)_{k\geq 0}$ of integers such that

►
$$U_0 = 1$$

► $\frac{U_{k+1}}{U_k}$ is bounded
 $n = \sum_{i=0}^{\ell} c_i U_i$, with $c_i \in \Sigma_U$, $c_\ell \neq 0$, $\operatorname{rep}_U(n) = c_\ell \cdots c_0$

The language of the numeration Γ

In particular, is $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ regular ?

Theorem (Shallit '94)

If \mathcal{L}_U is regular, then $(U_k)_{k\geq 0}$ satisfies a linear recurrent equation

Theorem (N. Loraud '95, M. Hollander '98)

THE LANGUAGE OF THE NUMERATION

In particular, is $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ regular ?

Theorem (Shallit '94)

If \mathcal{L}_U is regular, then $(U_k)_{k\geq 0}$ satisfies a linear recurrent equation

Theorem (N. Loraud '95, M. Hollander '98)

THE LANGUAGE OF THE NUMERATION

In particular, is $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ regular ?

THEOREM (SHALLIT '94)

If \mathcal{L}_U is regular, then $(U_k)_{k\geq 0}$ satisfies a linear recurrent equation.

Theorem (N. Loraud '95, M. Hollander '98)

THE LANGUAGE OF THE NUMERATION

In particular, is $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ regular ?

THEOREM (SHALLIT '94)

If \mathcal{L}_U is regular, then $(U_k)_{k\geq 0}$ satisfies a linear recurrent equation.

THEOREM (N. LORAUD '95, M. HOLLANDER '98)

Best known case : "Pisot systems"

If the characteristic polynomial of $(U_k)_{k\geq 0}$ is the minimal polynomial of a Pisot number θ then "everything" is fine: \mathcal{L}_U is regular, addition preserves recognizability, logical first order characterization of recognizable sets, ... "Just" like in the integer case : $U_k \simeq \theta^k$.

A. Bertrand '89, C. Frougny, B. Solomyak, D. Berend, J. Sakarovitch, V. Bruyère and G. Hansel '97, ...

EXAMPLE

Take the golden ratio
$$au=rac{1+\sqrt{5}}{2},$$
 $M_{ au}(X)=X^2-X-1$

$$U_{k+2} = U_{k+1} + U_k$$
, $U_0 = 1$, $U_1 = 2$

Fibonacci numeration system : $\mathcal{L}_U = \{\varepsilon\} \cup 1\{0,01\}^*$.

・ロト・日本・日本・日本・日本・日本

Best known case : "Pisot systems"

If the characteristic polynomial of $(U_k)_{k\geq 0}$ is the minimal polynomial of a Pisot number θ then "everything" is fine: \mathcal{L}_U is regular, addition preserves recognizability, logical first order characterization of recognizable sets, ... "Just" like in the integer case : $U_k \simeq \theta^k$.

A. Bertrand '89, C. Frougny, B. Solomyak, D. Berend, J. Sakarovitch, V. Bruyère and G. Hansel '97, ...

EXAMPLE

Take the golden ratio
$$au=rac{1+\sqrt{5}}{2},$$
 $M_{ au}(X)=X^2-X-1$

$$U_{k+2} = U_{k+1} + U_k, \quad U_0 = 1, \ U_1 = 2$$

Fibonacci numeration system : $\mathcal{L}_U = \{\varepsilon\} \cup 1\{0,01\}^*$.

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- ► Everybody takes first a sequence (U_k)_{k≥0}
- ► then ask for the language L_U of the numeration to be regular and play with recognizable sets

・ロン・ロン・モン・モン・モ

Why not proceed backwards ?

REMARK

Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

EXAMPLE (FIBONACCI)

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- ► Everybody takes first a sequence (U_k)_{k≥0}
- then ask for the language LU of the numeration to be regular and play with recognizable sets

Why not proceed backwards ?

Remark

Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

EXAMPLE (FIBONACCI)

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- ► Everybody takes first a sequence (U_k)_{k≥0}
- then ask for the language LU of the numeration to be regular and play with recognizable sets

Why not proceed backwards ?

Remark

Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

EXAMPLE (FIBONACCI)

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- ► Everybody takes first a sequence (U_k)_{k≥0}
- then ask for the language LU of the numeration to be regular and play with recognizable sets

Why not proceed backwards ?

Remark

Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

EXAMPLE (FIBONACCI)

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- ► Everybody takes first a sequence (U_k)_{k≥0}
- then ask for the language LU of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

Remark

Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

Example (Fibonacci)

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- ► Everybody takes first a sequence (U_k)_{k≥0}
- then ask for the language LU of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

Remark

Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

EXAMPLE (FIBONACCI)

DEFINITION (P. LECOMTE, M.R. '01)

An *abstract numeration system* is a triple $S = (L, \Sigma, <)$ where *L* is a regular language over a totally ordered alphabet $(\Sigma, <)$. Enumerating the words of *L* with respect to the genealogical ordering induced by < gives a one-to-one correspondence

$$\operatorname{rep}_{S} : \mathbb{N} \to L \qquad \operatorname{val}_{S} = \operatorname{rep}_{S}^{-1} : L \to \mathbb{N}.$$

REMARK

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

EXAMPLE (POSITIONAL)

$$L = \{\varepsilon\} \cup \{1, \dots, k-1\} \{0, \dots, k-1\}^* \text{ or } L = \{\varepsilon\} \cup 1\{0, 01\}^*$$

EXAMPLE (NON POSITIONAL)

Non positional numeration system : $L = a^*b^* \Sigma = \{a < b\}$

 $val(a^{p}b^{q}) = \frac{1}{2}(p+q)(p+q+1) + q$

REMARK

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

EXAMPLE (POSITIONAL)

$$L = \{\varepsilon\} \cup \{1, \dots, k-1\} \{0, \dots, k-1\}^* \text{ or } L = \{\varepsilon\} \cup 1\{0, 01\}^*$$

EXAMPLE (NON POSITIONAL)

Non positional numeration system : $L = a^*b^* \Sigma = \{a < b\}$

 $val(a^{p}b^{q}) = \frac{1}{2}(p+q)(p+q+1)+q$

#b

#b #a

・ロト・日本・日本・日本・日本・日本

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S ?
 - For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

・ロット (雪) (日) (日) (日)

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, …
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

What about S-recognizable sets ?

- Are ultimately periodic sets S-recognizable for any S 1
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, …
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, …
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, …
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, …
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find *S* s.t. *X* is *S*-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find *S* s.t. *X* is *S*-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find *S* s.t. *X* is *S*-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

- What about S-recognizable sets ?
 - Are ultimately periodic sets S-recognizable for any S?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find *S* s.t. *X* is *S*-recognizable ?

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

THEOREM

Let $S = (L, \Sigma, <)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

Well-known fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.

Example

 $at L = a^*b^* \cup a^*c^*, a < b < c.$ $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$ $c \quad a \quad b \quad c \quad aa \quad ab \quad ac \quad bb \quad cc \quad aaa$

・ロト・日本・日本・日本・日本

THEOREM

Let $S = (L, \Sigma, <)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

Well-known fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.

EXAMPLE

Let $L = a^*b^* \cup a^*c^*$, a < b < c. 0 1 2 3 4 5 6 7 8 9 ... ε a b c aa ab ac bb cc aaa ...

THEOREM

Let $S = (L, \Sigma, <)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

Well-known fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.

EXAMPLE

Let $L = a^*b^* \cup a^*c^*$, a < b < c. 0 1 2 3 4 5 6 7 8 9 ... ε a b c aa ab ac bb cc aaa ...

DEFINITION OF COMPLEXITY

Let $\mathcal{A} = (Q, q_0, F, \Sigma, \delta)$, $\mathbf{u}_q(n) = \#\{w \in \Sigma^n \mid \delta(q, w) \in F\}$ i.e., number of words of length *n* accepted from *q* in \mathcal{A} .

 $\mathbf{u}_{q_0}(n) = \#(L \cap \Sigma^n).$

THEOREM ("MULTIPLICATION BY A CONSTANT")				
slender language	$\mathbf{u}_{q_0}(n)\in\mathcal{O}(1)$	OK		
polynomial language	$\mathbf{u}_{q_0}(n)\in\mathcal{O}(n^k)$	NOT OK		
exponential language				
with polynomial complement	${f u}_{q_0}(n)\in 2^{\Omega(n)}$	NOT OK		
exponential language				
with exponential complement	${f u}_{q_0}({\it n})\in 2^{\Omega({\it n})}$	OK ?		

Remember

Émilie Charlier's talk on bounded languages a*b*,...

DEFINITION OF COMPLEXITY

Let $\mathcal{A} = (Q, q_0, F, \Sigma, \delta)$, $\mathbf{u}_q(n) = \#\{w \in \Sigma^n \mid \delta(q, w) \in F\}$ i.e., number of words of length *n* accepted from *q* in \mathcal{A} .

 $\mathbf{u}_{q_0}(n) = \#(L \cap \Sigma^n).$

THEOREM ("MULTIPLICATION BY A CONSTANT")				
slender language	$\mathbf{u}_{q_0}(n)\in\mathcal{O}(1)$	OK		
polynomial language	$\mathbf{u}_{q_0}(n)\in\mathcal{O}(n^k)$	NOT OK		
exponential language				
with polynomial complement	${f u}_{q_0}(n)\in 2^{\Omega(n)}$	NOT OK		
exponential language				
with exponential complement	${f u}_{q_0}({\it n})\in 2^{\Omega({\it n})}$	OK ?		

Remember

Émilie Charlier's talk on bounded languages a*b*,...

DEFINITION (SUBSTITUTIONS)

Let $f : \Sigma \to \Sigma^*$ and $g : \Sigma \to \Gamma^*$ be to morphisms such that $f(a) \in a\Sigma^+$. We define a *morphic word* over Γ ,

$$w = g(\lim_{n\to\infty} f^n(a)) = g(f^{\omega}(a)).$$

REMARK (COBHAM, ALLOUCHE-SHALLIT)

One can assume *f* non-erasing and *g* letter-to-letter.

EXAMPLE (CHARACTERISTIC SEQUENCE OF SQUARES)

 $f: a \mapsto abcd, \ b \mapsto b, \ c \mapsto cdd, \ d \mapsto d, \ g: a, b \mapsto 1, \ c, d \mapsto 0.$

 $f^{\omega}(a) = abcdbcdddbcddddbcdddddbc \cdots$

DEFINITION

Let $S = (L, \Sigma, <)$ be an abstract number system and $\mathcal{M} = (Q, q_0, \Sigma, \delta, \Gamma, \tau)$ be a DFAO. Consider the S-automatic sequence

 $\mathbf{x}_{n} = \tau(\delta(\mathbf{q}_{0}, (\operatorname{rep}_{S}(n))))$

EXAMPLE

$$\textbf{S} = (\textbf{a}^*, \textbf{b}^*, \{\textbf{a}, \textbf{b}\}, \textbf{a} < \textbf{b})$$

 $01023031200231010123023031203120231002310123\cdots$

Remark

A set $X \subseteq \mathbb{N}$ is S-recognizable iff its characteristic sequence is S-automatic.

THEOREM (A. MAES, M.R. '02)

The set of S-automatic sequences (for any S) coincides with the set of morphic words.

F. DURAND '98

Let (f, g, a) (resp. (f', g', a')) be a primitive substitution with a Perron dominating eigenvalue $\alpha > 1$ (resp. $\beta > 1$). If α and β are multiplicatively independent and if the characteristic sequence χ of the set $X \subseteq \mathbb{N}$ is such that

$$g(f^{\omega}(a)) = \chi = g'(f'^{\omega}(a'))$$

then X is ultimately periodic.

REMARK 1 DURAND '02 (E. SENETA, D. LIND-B. MARCUS)

Primitiveness assumption can be removed but

$$\forall \sigma \in \Sigma, \lim_{n \to \infty} |f^n(\sigma)| = +\infty$$
 i.e., growing substitution

Remark 2

A few cases are problematic, substitutions with no main "sub-substitution" having the same dominating eigenvalue.

EXAMPLE

$$f: \{a, 0, 1\} \to \{a, 0, 1\}^*: \begin{cases} a \mapsto aa0 \\ 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases} = (1 + \sqrt{5})/2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

Let $\tau : A \to A^*$ be a substitution on the finite alphabet *A*. There exists *p* such that for $\sigma = \tau^p$ and for all $a \in A$, one of the following two situations occurs, either

$$\exists N \in \mathbb{N} : \forall n > N, |\sigma^n(a)| = 0,$$

or there exist $d(a) \in \mathbb{N}$ and algebraic numbers $c(a), \alpha(a)$ such that

$$\lim_{n\to+\infty}\frac{|\sigma^n(a)|}{c(a)\,n^{d(a)}\,\alpha(a)^n}=1.$$

DEFINITION

 (d, α) is the growth type of *a* $(d, \alpha) < (e, \beta)$ if $\alpha < \beta$ or $(\alpha = \beta$ and d < e), i.e., $\frac{n^d \alpha^n}{n^e \beta^n} \rightarrow 0$. Maximal growth type = growth type of τ .

LINK WITH ABSTRACT SYSTEMS

Let $S = (L, \Sigma, <)$ with $\mathbf{u}_{q_0}(n) = \#(L \cap \Sigma^n) \simeq n^D \Theta^n$ and $E \subseteq \mathbb{N}$ a S-recognizable set of integers

$$\begin{array}{l} \Theta > 1 \\ \Theta = 1 \end{array} \begin{vmatrix} \chi_E \text{ is } (D, \Theta^{\ell}) \text{-substitutive} \\ \chi_E \text{ is } (D+1, 1) \text{-substitutive} \end{vmatrix}$$

THEOREM

Let $d, e \in \mathbb{N} \setminus \{0\}$ and $\alpha, \beta \in [1, +\infty)$ such that $(d, \alpha) \neq (e, \beta)$ and satisfying one of the following three conditions:

- 1. α and β are multiplicatively independent;
- 2. $\alpha, \beta > 1$ and $d \neq e$;
- 3. $(\alpha, \beta) \neq (1, 1)$ and, $\beta = 1$ and $e \neq 0$, or, $\alpha = 1$ and $d \neq 0$;

Let C be a finite alphabet. If $x \in C^{\mathbb{N}}$ is both (d, α) -substitutive and (e, β) -substitutive then the letters of C which have infinitely many occurrences in x appear in x with bounded gaps.

EXAMPLE

If $X \subseteq \mathbb{N}$ is both *S*- and *T*-recognizable where *S* (resp. *T*) is built over an exponential (resp. a polynomial) language then *X* is ultimately periodic.

EXAMPLE (BASE 10)

$\pi - 3 = .14159265358979323846264338328 \cdots$ $\frac{1}{10}, \quad \frac{14}{100}, \quad \frac{141}{1000}, \quad \dots, \quad \frac{val(w_n)}{10^n}, \quad \dots$

 $\frac{\operatorname{val}(w)}{\#\{\operatorname{words of length} \leq |w|\}}$

This deserves notation

$$\mathbf{v}_{q_0}(n) = \#(L \cap \Sigma^{\leq n}) = \sum_{i=0}^n \mathbf{u}_{q_0}(i).$$

◆□▶◆□▶◆□▶◆□▶ □ のへで

EXAMPLE (BASE 10)

$\pi - 3 = .14159265358979323846264338328 \cdots$ $\frac{1}{10}, \quad \frac{14}{100}, \quad \frac{141}{1000}, \quad \dots, \quad \frac{val(w_n)}{10^n}, \quad \dots$

 $\frac{\operatorname{val}(w)}{\#\{\operatorname{words of length} \leq |w|\}}$

This deserves notation

$$\mathbf{v}_{q_0}(n) = \#(L \cap \Sigma^{\leq n}) = \sum_{i=0}^n \mathbf{u}_{q_0}(i).$$

EXAMPLE (BASE 10)

$\pi - 3 = .14159265358979323846264338328 \cdots$ $\frac{1}{10}, \quad \frac{14}{100}, \quad \frac{141}{1000}, \quad \dots, \quad \frac{val(w_n)}{10^n}, \quad \dots$

 $\frac{\operatorname{val}(w)}{\#\{\operatorname{words of length} \leq |w|\}}$

THIS DESERVES NOTATION

$$\mathbf{v}_{q_0}(n) = \#(L \cap \Sigma^{\leq n}) = \sum_{i=0}^n \mathbf{u}_{q_0}(i).$$

EXAMPLE (AVOID *aa* ON THREE LETTERS)

W	val(W)	$\mathbf{v}_{q_0}(w)$	$\operatorname{val}(w)/\mathbf{v}_{q_0}(w)$
bc	8	12	0.66666666666667
bac	19	34	0.55882352941176
babc	52	94	0.55319148936170
babac	139	258	0.53875968992248
bababc	380	706	0.53824362606232
bababac	1035	1930	0.53626943005181
babababc	2828	5274	0.5362153962836

 $\lim_{n \to \infty} \frac{\operatorname{val}((ba)^n c)}{\mathbf{v}_{q_0}(2n+1)} = \frac{1}{1+\sqrt{3}} + \frac{3}{9+5\sqrt{3}} \simeq 0.535898.$

NUMERICAL VALUE OF A WORD $W = W_1 \cdots W_\ell \in L$

$$\operatorname{val}(w) = \sum_{i=1}^{\ell} \sum_{q \in Q} (\theta_{q,i}(w) + \delta_{q,s}) \mathbf{u}_q(|w| - i)$$

where $\theta_{q,i}(w) = \#\{\sigma < w_i \mid s.w_1 \cdots w_{i-1}\sigma = q\}$

Hypotheses: For all state q of \mathcal{M}_L , either

(i) $\exists N_q \in \mathbb{N} : \forall n > N_q, \mathbf{u}_q(n) = 0$, or (ii) $\exists \beta_q \ge 1, P_q(x) \in \mathbb{R}[x], b_q > 0 : \lim_{n \to \infty} \frac{\mathbf{u}_q(n)}{P_q(n)\beta_q^n} = b_q$.

From automata theory, we have

$$\beta_{q_0} \geq \beta_q$$
 and $\beta_q = \beta_{q_0} \Rightarrow deg(P_q) \leq deg(P_{q_0})$

・ロト・西ト・モン・モー もくの

$$\operatorname{val}(w) = \sum_{i=1}^{\ell} \sum_{q \in Q} (\theta_{q,i}(w) + \delta_{q,s}) \mathbf{u}_q(|w| - i)$$

where $\theta_{q,i}(w) = \#\{\sigma < w_i \mid s.w_1 \cdots w_{i-1}\sigma = q\}$

Hypotheses: For all state q of \mathcal{M}_L , either

(i)
$$\exists N_q \in \mathbb{N} : \forall n > N_q, \mathbf{u}_q(n) = 0$$
, or
(ii) $\exists \beta_q \ge 1, P_q(\mathbf{x}) \in \mathbb{R}[\mathbf{x}], b_q > 0 : \lim_{n \to \infty} \frac{\mathbf{u}_q(n)}{P_q(n)\beta_q^n} = b_q$.

From automata theory, we have

$$\beta_{q_0} \geq \beta_q \text{ and } \beta_q = \beta_{q_0} \Rightarrow deg(P_q) \leq deg(P_{q_0})$$

Let $\beta = \beta_{q_0}$ and for any state q, define

$$\lim_{n\to\infty}\frac{\mathsf{u}_q(n)}{P_{q_0}(n)\beta^n}=\mathsf{a}_q\in\mathbb{Q}(\beta),\quad \mathsf{a}_{q_0}>0 \text{ and } \mathsf{a}_q \text{ could be zero}.$$

IF $(W_n)_{n \in \mathbb{N}}$ is converging to $W = W_1 W_2 \cdots$ then

$$\lim_{n\to\infty}\frac{\operatorname{val}(w_n)}{\mathbf{v}_{q_0}(|w_n|)}=\frac{\beta-1}{\beta^2}\sum_{j=0}^{\infty}\sum_{q\in Q}\frac{a_q}{a_{q_0}}\left(\theta_{q,j+1}(W)+\delta_{q,s}\right)\beta^{-j}.$$

REMARK [W. STEINER, M.R. '05]

By "normalizing" we can specify the value of a_{q_0} , why not take $a_{q_0} = 1 - \frac{1}{\beta}$?

Doing so, we obtain something close to β -expansion...

Let $\beta = \beta_{q_0}$ and for any state q, define

$$\lim_{n\to\infty}\frac{\mathsf{u}_q(n)}{P_{q_0}(n)\beta^n}=\mathsf{a}_q\in\mathbb{Q}(\beta),\quad \mathsf{a}_{q_0}>0 \text{ and } \mathsf{a}_q \text{ could be zero}.$$

IF $(W_n)_{n\in\mathbb{N}}$ is converging to $W = W_1 W_2 \cdots$ then

$$\lim_{n\to\infty}\frac{\operatorname{val}(w_n)}{\mathbf{v}_{q_0}(|w_n|)}=\frac{\beta-1}{\beta^2}\sum_{j=0}^{\infty}\sum_{q\in Q}\frac{a_q}{a_{q_0}}\left(\theta_{q,j+1}(W)+\delta_{q,s}\right)\beta^{-j}.$$

REMARK [W. STEINER, M.R. '05]

By "normalizing" we can specify the value of a_{q_0} , why not take $a_{q_0}=1-rac{1}{eta}$?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Doing so, we obtain something close to β -expansion...

Let $\beta = \beta_{q_0}$ and for any state q, define

$$\lim_{n\to\infty}\frac{\mathsf{u}_q(n)}{P_{q_0}(n)\beta^n}=\mathsf{a}_q\in\mathbb{Q}(\beta),\quad \mathsf{a}_{q_0}>0 \text{ and } \mathsf{a}_q \text{ could be zero}.$$

IF $(W_n)_{n\in\mathbb{N}}$ is converging to $W = W_1 W_2 \cdots$ then

$$\lim_{n\to\infty}\frac{\mathrm{val}(w_n)}{\mathbf{v}_{q_0}(|w_n|)}=\frac{\beta-1}{\beta^2}\sum_{j=0}^{\infty}\sum_{q\in\mathbf{Q}}\frac{a_q}{a_{q_0}}\left(\theta_{q,j+1}(W)+\delta_{q,s}\right)\beta^{-j}.$$

REMARK [W. STEINER, M.R. '05]

By "normalizing" we can specify the value of a_{q_0} , why not take $a_{q_0} = 1 - rac{1}{eta}$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Doing so, we obtain something close to β -expansion...

$W = W_1 W_2 \cdots$

$$\boldsymbol{x} = \frac{1}{\beta} + \sum_{j=1}^{\infty} \alpha_{q_0, W_1 \cdots W_{j-1}}(W_j) \beta^{-j}$$

where $\alpha_q(\sigma) = \sum_{\tau < \sigma} a_{q.\tau}$.

$$q_0 = s \text{ and } x_0 = x \in [0, a_s) = [0, 1 - 1/\beta),$$

$$\lfloor \beta x_0 \rfloor_s = a_{s.a} + a_{s.b} = \alpha_s(c) \quad w_1 = c$$

$$q_1 = s.c \text{ and } x_1 = \beta x_0 - \lfloor \beta x_0 \rfloor_s \in [0, a_{s.c})$$

$$\lfloor \beta x_1 \rfloor_{s.c} = a_{s.ca} + a_{s.cb} = \alpha_{s.c}(c) \quad w_2 = c$$

$$q_2 = s.cc \text{ and } x_2 = \beta x_1 - \lfloor \beta x_1 \rfloor_{s.c} \in [0, a_{s.cc})$$

$$\cdots \quad T_{\mathsf{S}}: (\mathbf{x}, q) \mapsto (\beta \mathbf{x} - \lfloor \beta \mathbf{x} \rfloor_q, q')$$

$$q_0 = s \text{ and } x_0 = x \in [0, a_s) = [0, 1 - 1/\beta),$$

$$\lfloor \beta x_0 \rfloor_s = a_{s.a} + a_{s.b} = \alpha_s(c) \qquad w_1 = c$$

$$q_1 = s.c \text{ and } x_1 = \beta x_0 - \lfloor \beta x_0 \rfloor_s \in [0, a_{s.c})$$

$$\lfloor \beta x_1 \rfloor_{s.c} = a_{s.ca} + a_{s.cb} = \alpha_{s.c}(c) \qquad w_2 = c$$

$$q_2 = s.cc \text{ and } x_2 = \beta x_1 - \lfloor \beta x_1 \rfloor_{s.c} \in [0, a_{s.cc})$$

 $\cdots \quad T_{\mathcal{S}}: (x,q) \mapsto (\beta x - \lfloor \beta x \rfloor_q, q')$

$$q_0 = s \text{ and } x_0 = x \in [0, a_s) = [0, 1 - 1/\beta),$$

$$\lfloor \beta x_0 \rfloor_s = a_{s.a} + a_{s.b} = \alpha_s(c) \quad w_1 = c$$

$$q_1 = s.c \text{ and } x_1 = \beta x_0 - \lfloor \beta x_0 \rfloor_s \in [0, a_{s.c})$$

$$\lfloor \beta x_1 \rfloor_{s.c} = a_{s.ca} + a_{s.cb} = \alpha_{s.c}(c) \quad w_2 = c$$

$$q_2 = s.cc \text{ and } x_2 = \beta x_1 - \lfloor \beta x_1 \rfloor_{s.c} \in [0, a_{s.cc})$$

 $\cdots \quad T_{\mathcal{S}}: (x,q) \mapsto (\beta x - \lfloor \beta x \rfloor_q, q')$

$$\begin{aligned} q_0 &= s \text{ and } x_0 = x \in [0, a_s) = [0, 1 - 1/\beta), \\ \lfloor \beta x_0 \rfloor_s &= a_{s.a} + a_{s.b} = \alpha_s(c) \quad w_1 = c \\ q_1 &= s.c \text{ and } x_1 = \beta x_0 - \lfloor \beta x_0 \rfloor_s \in [0, a_{s.c}) \\ \lfloor \beta x_1 \rfloor_{s.c} &= a_{s.ca} + a_{s.cb} = \alpha_{s.c}(c) \quad w_2 = c \\ q_2 &= s.cc \text{ and } x_2 = \beta x_1 - \lfloor \beta x_1 \rfloor_{s.c} \in [0, a_{s.cc}) \\ & \cdots \quad T_S : (x, q) \mapsto (\beta x - \lfloor \beta x \rfloor_q, q') \end{aligned}$$

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

http://www.discmath.ulg.ac.be

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

http://www.discmath.ulg.ac.be

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

http://www.discmath.ulg.ac.be

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

http://www.discmath.ulg.ac.be

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

http://www.discmath.ulg.ac.be