AbSTRACT NUMERATION SYSTEMS

Michel Rigo

Department of Mathematics
University of Liège

Journées Montoises d'Informatique Théorique à Rennes, 2006

caucal@irisa.fr

Cher Michel, dans le cadre des Journées Montoises d'informatique théorique qui auront lieu à Rennes fin août-début septembre :
http://www.irisa.fr/JM06
Véronique et moi-même avons le plaisir de t'inviter à venir faire un exposé de synthèse (45 minutes) sur tes travaux.

OUTLINE OF THE TALK

Where it comes from

Motivation

Abstract numeration systems

First Results

ANOTHER FORMALISM

Towards a Cobham's THEOREM

REAL NUMBERS

Where it comes from

INTEGER BASE NUMERATION SYSTEM, $k \geq 2$

$$
n=\sum_{i=0}^{\ell} c_{i} k^{i}, \quad \text { with } \quad c_{i} \in \Sigma_{k}=\{0, \ldots, k-1\}, c_{\ell} \neq 0
$$

Any integer n corresponds to a word $\operatorname{rep}_{k}(n)=c_{\ell} \cdots c_{0}$ over Σ_{k}.

DEFINITION

A set $X \subseteq \mathbb{N}$ is k-recognizable if $\operatorname{rep}_{k}(X) \subseteq \Sigma_{k}^{*}$ is a regular language (accepted by a DFA).

THEOREM (COBHAM '69)
Iet $n, q>2$ be two multinlicatively independent integers. If $X \subseteq \mathbb{N}$ is both p-and q-recognizable, then X is ultimately periodic.

Where it comes from

INTEGER BASE NUMERATION SYSTEM, $k \geq 2$

$$
n=\sum_{i=0}^{\ell} c_{i} k^{i}, \quad \text { with } \quad c_{i} \in \Sigma_{k}=\{0, \ldots, k-1\}, c_{\ell} \neq 0
$$

Any integer n corresponds to a word $\operatorname{rep}_{k}(n)=c_{\ell} \cdots c_{0}$ over Σ_{k}.

DEFINITION

A set $X \subseteq \mathbb{N}$ is k-recognizable if $\operatorname{rep}_{k}(X) \subseteq \Sigma_{k}^{*}$ is a regular language (accepted by a DFA).

THEOREM (COBHAM '69)

Let $p, q \geq 2$ be two multiplicatively independent integers. If $X \subseteq \mathbb{N}$ is both p - and q-recognizable, then X is ultimately periodic.

DIVISIBILITY CRITERIA

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable for any $k \geq 2$.

VARIOUS PROOF SIMPLIFICATIONS AND GENERALIZATIONS

G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point, C. Michaux, R. Villemaire, A. Bès, J. Bell, J. Honkala, S. Fabre, C. Reutenauer, A.L. Semenov, L. Waxweiler, ...

NON STANDARD NUMERATION SYSTEMS

A strictly increasing sequence $\left(U_{k}\right)_{k \geq 0}$ of integers such that

- $U_{0}=1$
- $\frac{U_{k+1}}{U_{k}}$ is bounded
$n=\sum_{i=0}^{\ell} c_{i} U_{i}, \quad$ with $\quad c_{i} \in \Sigma_{U}, c_{\ell} \neq 0, \quad \operatorname{rep}_{U}(n)=c_{\ell} \cdots c_{0}$

In a non standard setting, you can play the same game : which subsets of \mathbb{N} have a simple expression, i.e., are U-recognizable?

The language of the numeration

In particular, is $\mathcal{L}_{U}=\operatorname{rep}_{U}(\mathbb{N})$ regular ?

THEOREM (SHALLIT '94)

If \mathcal{L}_{U} is regular,
then $\left(U_{k}\right)_{k \geq 0}$ satisfies a linear recurrent equation.

Theorem (N. Loraud '95, M. Hollander '98)
They give (technical) sufficient conditions for $\mathcal{C} u$ to be regular: "the characteristic polynomial of the recurrence has a special form"

In a non standard setting, you can play the same game : which subsets of \mathbb{N} have a simple expression, i.e., are U-recognizable ?

THE LANGUAGE OF THE NUMERATION

In particular, is $\mathcal{L}_{U}=\operatorname{rep}_{U}(\mathbb{N})$ regular?

THEOREM (SHALLIT '94)
If C_{U} is regular
then $\left(U_{k}\right)_{k>0}$ satisfies a linear recurrent equation.

Theorem (N. Loraud '95, M. Hollander '98)
They give (technical) sufficient conditions for $\mathcal{C} u$ to be regular: "the characteristic polynomial of the recurrence has a special form"

In a non standard setting, you can play the same game :
which subsets of \mathbb{N} have a simple expression,
i.e., are U-recognizable ?

THE LANGUAGE OF THE NUMERATION

In particular, is $\mathcal{L}_{U}=\operatorname{rep}_{U}(\mathbb{N})$ regular?

THEOREM (SHALLIT '94)

If \mathcal{L}_{U} is regular, then $\left(U_{k}\right)_{k \geq 0}$ satisfies a linear recurrent equation.

They give (technical) sufficient conditions for \mathcal{L}_{U} to be regular:
"the characteristic polynomial of the recurrence has a special form'

In a non standard setting, you can play the same game :
which subsets of \mathbb{N} have a simple expression, i.e., are U-recognizable?

THE LANGUAGE OF THE NUMERATION

In particular, is $\mathcal{L}_{U}=\operatorname{rep}_{U}(\mathbb{N})$ regular?

THEOREM (SHALLIT '94)

If \mathcal{L}_{U} is regular, then $\left(U_{k}\right)_{k \geq 0}$ satisfies a linear recurrent equation.

THEOREM (N. LORAUd '95, M. Hollander '98)

They give (technical) sufficient conditions for \mathcal{L}_{U} to be regular: "the characteristic polynomial of the recurrence has a special form".

BEST KNOWN CASE : "PISOT SYSTEMS"

If the characteristic polynomial of $\left(U_{k}\right)_{k \geq 0}$ is the minimal polynomial of a Pisot number θ then "everything" is fine: \mathcal{L}_{U} is regular, addition preserves recognizability, logical first order characterization of recognizable sets, ... "Just" like in the integer case : $U_{k} \simeq \theta^{k}$.
A. Bertrand '89, C. Frougny, B. Solomyak, D. Berend, J. Sakarovitch, V. Bruyère and G. Hansel '97, ...

EXAMPLE

Take the golden ratio $\tau=\frac{1+\sqrt{5}}{2}, M_{\tau}(X)=X^{2}-X-1$

BEST KNOWN CASE : "PISOT SYSTEMS"

If the characteristic polynomial of $\left(U_{k}\right)_{k \geq 0}$ is the minimal polynomial of a Pisot number θ then "everything" is fine: \mathcal{L}_{U} is regular, addition preserves recognizability, logical first order characterization of recognizable sets, ... "Just" like in the integer case : $U_{k} \simeq \theta^{k}$.
A. Bertrand '89, C. Frougny, B. Solomyak, D. Berend, J. Sakarovitch, V. Bruyère and G. Hansel '97, ...

EXAMPLE

Take the golden ratio $\tau=\frac{1+\sqrt{5}}{2}, M_{\tau}(X)=X^{2}-X-1$

$$
U_{k+2}=U_{k+1}+U_{k}, \quad U_{0}=1, \quad U_{1}=2
$$

Fibonacci numeration system : $\mathcal{L}_{U}=\{\varepsilon\} \cup 1\{0,01\}^{*}$.

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :
> - Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
> - then ask for the language \mathcal{L}_{U} of the numeration to be regular and play with recognizable sets
> - Why not proceed backwards ?

\square
REMARK
Let $x, y \in \mathbb{N}, x<y \Leftrightarrow \operatorname{rep}_{u}(x)<g e n \operatorname{rep}_{u}(y)$.
\square
\square gen 1010 (same length)
$6<8$ and $1001<$ gen 10000 (different lengths)

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question:

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language \mathcal{L}_{U} of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?
\square Let $x, y \in \mathbb{N}, x<y \Leftrightarrow \operatorname{rep}_{u}(x)<g e n \operatorname{rep}_{u}(y)$.

Motivation

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language \mathcal{L}_{U} of the numeration to be regular and play with recognizable sets

\square gen 1010 (same length)
\square

Motivation

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language \mathcal{L}_{U} of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

\square gen 1010 (same length)
\square gen 10000 (different lengths)

Motivation

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language \mathcal{L}_{U} of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

REMARK

Let $x, y \in \mathbb{N}, x<y \Leftrightarrow \operatorname{rep}_{u}(x)<g e n \operatorname{rep}_{u}(y)$.
$6<7$ and 1001 gen 1010 (same length)
$6<8$ and $1001<$ gen 10000 (different lengths)

A QUESTION

After G. Hansel's talk during JM'94 in Mons and knowing Shallit's results, P. Lecomte has the following question :

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language \mathcal{L}_{U} of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

REMARK

Let $x, y \in \mathbb{N}, x<y \Leftrightarrow \operatorname{rep}_{u}(x)<g e n \operatorname{rep}_{u}(y)$.

Example (FibONACCI)

$6<7$ and $1001<$ gen 1010 (same length)
$6<8$ and $1001<$ gen 10000 (different lengths).

DEFINITION (P. LECOMTE, M.R. '01)

An abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is a regular language over a totally ordered alphabet $(\Sigma,<)$. Enumerating the words of L with respect to the genealogical ordering induced by < gives a one-to-one correspondence

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N}
$$

First RESULTS

REMARK

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

EXAMPLE (POSITIONAL)

$$
L=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*} \text { or } L=\{\varepsilon\} \cup 1\{0,01\}^{*}
$$

EXAMPLE (NON POSITIONAL)
Non nositional numeration system : $L=a^{*} b^{*} \Sigma=\{a<b\}$

$\operatorname{val}\left(a^{p} b^{q}\right)=\frac{1}{2}(p+q)(p+q+1)+q$

First RESULTS

REMARK

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

EXAMPLE (POSITIONAL)

$L=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*}$ or $L=\{\varepsilon\} \cup 1\{0,01\}^{*}$

EXAMPLE (NON POSITIONAL)

Non positional numeration system : $L=a^{*} b^{*} \Sigma=\{a<b\}$

$$
\begin{array}{r|cccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\hline \operatorname{rep}(n) & \varepsilon & a & b & a a & a b & b b & a a a & \cdots
\end{array}
$$

$$
\operatorname{val}\left(a^{p} b^{q}\right)=\frac{1}{2}(p+q)(p+q+1)+q
$$

EXAMPLE (CONTINUED...)

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic. . .

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant,
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions?
- Dynamics, odometer, tilings, logic. . .

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
> - For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable ?
> - For a given S, what are the S-recognizable sets ?
- Can we compute "eacily" in these systems?
- Addition, multiplication by a constant,
- Are these systems equivalent to something else ?
- Any hone for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics odometer tilings logic.

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant,
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions?
- Dynamics, odometer, tilings, logic. .

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant,

Are these systems equivalent to something else ?

- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic.

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions?
- Dynamics, odometer, tilings, logic.

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic.

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions?
- Dynamics, odometer, tilinas, loaic. .

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions?
- Dynamics, odometer, tilings, logic.

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions?
- Dynamics, odometer, tilings, logic.

MANY NATURAL QUESTIONS. . .

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we fi nd S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions?
- Dynamics, odometer, tilings, logic...

THEOREM

Let $S=(L, \Sigma,<)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

WELL-KNOWN FACT (SEE EILENBERG'S BOOK)
 The set of squares is never recognizable in any integer base system.

THEOREM

Let $S=(L, \Sigma,<)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

WELL-KNOWN FACT (SEE EILENBERG'S BOOK)
The set of squares is never recognizable in any integer base system.

EXAMPLE
 Let $L=a^{*} b^{*} \cup a^{*} c^{*}, a<b<c$.

THEOREM

Let $S=(L, \Sigma,<)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

WELL-KNOWN FACT (SEE EILENBERG'S BOOK)

The set of squares is never recognizable in any integer base system.

ExAMPLE

Let $L=a^{*} b^{*} \cup a^{*} c^{*}, a<b<c$.

$$
\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
\varepsilon & a & b & c & a a & a b & a c & b b & c c & a a a & \cdots
\end{array}
$$

DEFINITION OF COMPLEXITY

Let $\mathcal{A}=\left(Q, q_{0}, F, \Sigma, \delta\right), \mathbf{u}_{q}(n)=\#\left\{w \in \Sigma^{n} \mid \delta(q, w) \in F\right\}$
i.e., number of words of length n accepted from q in \mathcal{A}.

$$
\mathbf{u}_{q_{0}}(n)=\#\left(L \cap \Sigma^{n}\right) .
$$

THEOREM ("MULTIPLICATION BY A CONSTANT")

slender language	$\mathbf{u}_{q_{0}}(n) \in \mathcal{O}(1)$	OK
polynomial language	$\mathbf{u}_{q_{0}}(n) \in \mathcal{O}\left(n^{k}\right)$	NOT OK
exponential language		
with polynomial complement	$\mathbf{u}_{q_{0}}(n) \in 2^{\Omega(n)}$	NOT OK
exponential language	$\mathbf{u}_{q_{0}}(n) \in 2^{\Omega(n)}$	OK?

Émilie Charlier's talk on bounded languages $a^{*} b^{*}$

DEFINITION OF COMPLEXITY

Let $\mathcal{A}=\left(Q, q_{0}, F, \Sigma, \delta\right), \mathbf{u}_{q}(n)=\#\left\{w \in \Sigma^{n} \mid \delta(q, w) \in F\right\}$
i.e., number of words of length n accepted from q in \mathcal{A}.

$$
\mathbf{u}_{q_{0}}(n)=\#\left(L \cap \Sigma^{n}\right) .
$$

THEOREM ("MULTIPLICATION BY A CONSTANT")

slender language	$\mathbf{u}_{q_{0}}(n) \in \mathcal{O}(1)$	OK
polynomial language	$\mathbf{u}_{q_{0}}(n) \in \mathcal{O}\left(n^{k}\right)$	NOT OK
exponential language		
with polynomial complement	$\mathbf{u}_{q_{0}}(n) \in 2^{\Omega(n)}$	NOT OK
exponential language	$\mathbf{u}_{q_{0}}(n) \in 2^{\Omega(n)}$	OK?

REMEMBER

Émilie Charlier's talk on bounded languages $a^{*} b^{*}, \ldots$.

ANOTHER FORMALISM

DEFINITION (SUBSTITUTIONS)

Let $f: \Sigma \rightarrow \Sigma^{*}$ and $g: \Sigma \rightarrow \Gamma^{*}$ be to morphisms such that $f(a) \in a \Sigma^{+}$. We define a morphic word over Γ,

$$
w=g\left(\lim _{n \rightarrow \infty} f^{n}(a)\right)=g\left(f^{\omega}(a)\right)
$$

Remark (CobHAM, Allouche-Shallit)

One can assume f non-erasing and g letter-to-letter.
EXAMPLE (CHARACTERISTIC SEQUENCE OF SQUARES)
$f: a \mapsto a b c d, b \mapsto b, c \mapsto c d d, d \mapsto d, g: a, b \mapsto 1, c, d \mapsto 0$.

$$
\begin{gathered}
f^{\omega}(a)=a b c d b c d d d b c d d d d d b c d d d d d d d b c \cdots \\
g\left(f^{\omega}(a)\right)=110010000100000010000000010 \cdots
\end{gathered}
$$

DEFINITION

Let $S=(L, \Sigma,<)$ be an abstract number system and $\mathcal{M}=\left(Q, q_{0}, \Sigma, \delta, \Gamma, \tau\right)$ be a DFAO.
Consider the S-automatic sequence

$$
x_{n}=\tau\left(\delta\left(q_{0},\left(\operatorname{rep}_{S}(n)\right)\right)\right)
$$

EXAMPLE

$$
S=\left(a^{*}, b^{*},\{a, b\}, a<b\right)
$$

$01023031200231010123023031203120231002310123 \ldots$

REMARK

A set $X \subseteq \mathbb{N}$ is S-recognizable iff its characteristic sequence is S-automatic.

Theorem (A. MaEs, M.R. '02)

The set of S-automatic sequences (for any S) coincides with the set of morphic words.

TOWARDS A COBHAM'S THEOREM

F. DURAND '98

Let (f, g, a) (resp. $\left.\left(f^{\prime}, g^{\prime}, a^{\prime}\right)\right)$ be a primitive substitution with a Perron dominating eigenvalue $\alpha>1$ (resp. $\beta>1$). If α and β are multiplicatively independent and if the characteristic sequence χ of the set $X \subseteq \mathbb{N}$ is such that

$$
g\left(f^{\omega}(a)\right)=\chi=g^{\prime}\left(f^{\omega}\left(a^{\prime}\right)\right)
$$

then X is ultimately periodic.

Remark 1 Durand '02 (E. Seneta, D. Lind-B. Marcus)

Primitiveness assumption can be removed but

$$
\forall \sigma \in \Sigma, \lim _{n \rightarrow \infty}\left|f^{n}(\sigma)\right|=+\infty \quad \text { i.e., growing substitution }
$$

REMARK 2

A few cases are problematic, substitutions with no main "sub-substitution" having the same dominating eigenvalue.

EXAMPLE

$$
f:\{a, 0,1\} \rightarrow\{a, 0,1\}^{*}:\left\{\left.\begin{array}{l}
a \mapsto a a 0 \\
0 \mapsto 01 \\
1 \mapsto 0
\end{array} \right\rvert\,(1+\sqrt{5}) / 2\right.
$$

LEMMA

Let $\tau: A \rightarrow A^{*}$ be a substitution on the finite alphabet A. There exists p such that for $\sigma=\tau^{p}$ and for all $a \in A$, one of the following two situations occurs, either

$$
\exists N \in \mathbb{N}: \forall n>N,\left|\sigma^{n}(a)\right|=0
$$

or there exist $d(a) \in \mathbb{N}$ and algebraic numbers $c(a), \alpha(a)$ such that

$$
\lim _{n \rightarrow+\infty} \frac{\left|\sigma^{n}(a)\right|}{c(a) n^{d(a)} \alpha(a)^{n}}=1
$$

DEFINITION

(d, α) is the growth type of a $(d, \alpha)<(e, \beta)$ if $\alpha<\beta$ or $(\alpha=\beta$ and $d<e)$, i.e., $\frac{n^{d} \alpha^{n}}{n^{\beta} \beta^{n}} \rightarrow 0$. Maximal growth type $=$ growth type of τ.

LINK WITH ABSTRACT SYSTEMS

Let $S=(L, \Sigma,<)$ with $\mathbf{u}_{q_{0}}(n)=\#\left(L \cap \Sigma^{n}\right) \simeq n^{D} \Theta^{n}$ and
$E \subseteq \mathbb{N}$ a S-recognizable set of integers

$$
\begin{array}{l|l}
\Theta>1 & \chi_{E} \text { is }\left(D, \Theta^{\ell}\right) \text {-substitutive } \\
\Theta=1 & \chi_{E} \text { is }(D+1,1) \text {-substitutive }
\end{array}
$$

THEOREM

Let $d, e \in \mathbb{N} \backslash\{0\}$ and $\alpha, \beta \in[1,+\infty)$ such that $(d, \alpha) \neq(e, \beta)$ and satisfying one of the following three conditions:

1. α and β are multiplicatively independent;
2. $\alpha, \beta>1$ and $d \neq e$;
3. $(\alpha, \beta) \neq(1,1)$ and, $\beta=1$ and $e \neq 0$, or, $\alpha=1$ and $d \neq 0$; Let C be a finite alphabet. If $x \in C^{\mathbb{N}}$ is both (d, α)-substitutive and (e, β)-substitutive then the letters of C which have infinitely many occurrences in x appear in x with bounded gaps.

EXAMPLE

If $X \subseteq \mathbb{N}$ is both S - and T-recognizable where $S($ resp. T) is built over an exponential (resp. a polynomial) language then X is ultimately periodic.

EXAMPLE (BASE 10)

$$
\begin{gathered}
\pi-3=.14159265358979323846264338328 \ldots \\
\frac{1}{10}, \quad \frac{14}{100}, \quad \frac{141}{1000}, \quad \ldots, \quad \frac{\operatorname{val}\left(w_{n}\right)}{10^{n}}, \quad \ldots
\end{gathered}
$$

THIS DESERVES NOTATION

EXAMPLE (BASE 10)

$$
\begin{gathered}
\pi-3=.14159265358979323846264338328 \ldots \\
\frac{1}{10}, \quad \frac{14}{100}, \quad \frac{141}{1000}, \quad \ldots, \quad \frac{\operatorname{val}\left(w_{n}\right)}{10^{n}}, \quad \ldots \\
\\
\frac{\operatorname{val}(w)}{\#\{\text { words of length } \leq|w|\}}
\end{gathered}
$$

THIS DESERVES NOTATION

EXAMPLE (BASE 10)

$$
\begin{gathered}
\pi-3=.14159265358979323846264338328 \ldots \\
\frac{1}{10}, \quad \frac{14}{100}, \quad \frac{141}{1000}, \quad \ldots, \quad \frac{\operatorname{val}\left(w_{n}\right)}{10^{n}}, \quad \ldots \\
\frac{\operatorname{val}(w)}{\#\{\text { words of length } \leq|w|\}}
\end{gathered}
$$

This Deserves notation

$$
\mathbf{v}_{q_{0}}(n)=\#\left(L \cap \Sigma^{\leq n}\right)=\sum_{i=0}^{n} \mathbf{u}_{q_{0}}(i)
$$

EXAMPLE (AVOID aa ON THREE LETTERS)

w	$\operatorname{val}(w)$	$\mathbf{v}_{q_{0}}(\|w\|)$	$\operatorname{val}(w) / \mathbf{v}_{q_{0}}(\|w\|)$
bc	8	12	0.6666666666667
bac	19	34	0.55882352941176
babc	52	94	0.55319148936170
babac	139	258	0.53875968992248
bababc	380	706	0.53824362606232
bababac	1035	1930	0.53626943005181
babababc	2828	5274	0.5362153962836

$\lim _{n \rightarrow \infty} \frac{\operatorname{val}\left((b a)^{n} c\right)}{\mathbf{v}_{q_{0}}(2 n+1)}=\frac{1}{1+\sqrt{3}}+\frac{3}{9+5 \sqrt{3}} \simeq 0.535898$.

NUMERICAL VALUE OF A WORD $w=w_{1} \cdots w_{\ell} \in L$

$$
\operatorname{val}(w)=\sum_{i=1}^{\ell} \sum_{q \in Q}\left(\theta_{q, i}(w)+\delta_{q, s}\right) \mathbf{u}_{q}(|w|-i)
$$

where $\theta_{q, i}(w)=\#\left\{\sigma<w_{i} \mid s . w_{1} \cdots w_{i-1} \sigma=q\right\}$

Hypotheses: For all state q of \mathcal{M}_{L}, either

(i) $\exists N_{q} \in \mathbb{N} \cdot \forall n>N_{q}, \mathrm{U}_{q}(n)-0$ or
(ii) $\exists \beta_{q} \geq 1, P_{q}(x) \in \mathbb{R}[x], b_{q}>0: \lim _{n \rightarrow \infty} \frac{\mathrm{u}_{q}(n)}{P_{q}(n) \beta_{q}^{n}}=b_{q}$.

From automata theory, we have

$$
\beta_{q_{0}} \geq \beta_{q} \text { and } \beta_{q}=\beta_{q_{0}} \Rightarrow \operatorname{deg}\left(P_{q}\right) \leq \operatorname{deg}\left(P_{q_{0}}\right)
$$

NUMERICAL VALUE OF A WORD $w=w_{1} \cdots w_{\ell} \in L$

$$
\operatorname{val}(w)=\sum_{i=1}^{\ell} \sum_{q \in Q}\left(\theta_{q, i}(w)+\delta_{q, s}\right) \mathbf{u}_{q}(|w|-i)
$$

where $\theta_{q, i}(w)=\#\left\{\sigma<w_{i} \mid s . w_{1} \cdots w_{i-1} \sigma=q\right\}$

Hypotheses: FOR ALL state q OF \mathcal{M}_{L}, EITHER

(i) $\exists N_{q} \in \mathbb{N}: \forall n>N_{q}, \mathbf{u}_{q}(n)=0$, or
(ii) $\exists \beta_{q} \geq 1, P_{q}(x) \in \mathbb{R}[x], b_{q}>0: \lim _{n \rightarrow \infty} \frac{\mathbf{u}_{q}(n)}{P_{q}(n) \beta_{q}^{n}}=b_{q}$.

From automata theory, we have

$$
\beta_{q_{0}} \geq \beta_{q} \text { and } \beta_{q}=\beta_{q_{0}} \Rightarrow \operatorname{deg}\left(P_{q}\right) \leq \operatorname{deg}\left(P_{q_{0}}\right)
$$

Let $\beta=\beta_{q_{0}}$ and for any state q, define
$\lim _{n \rightarrow \infty} \frac{\mathbf{u}_{q}(n)}{P_{q_{0}}(n) \beta^{n}}=a_{q} \in \mathbb{Q}(\beta), \quad a_{q_{0}}>0$ and a_{q} could be zero.

IF $\left(w_{n}\right)_{n \in \mathbb{N}}$ IS CONVERGING TO $W=W_{1} W_{2} \cdots$ THEN

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{val}\left(w_{n}\right)}{\mathbf{v}_{q_{0}}\left(\left|w_{n}\right|\right)}=\frac{\beta-1}{\beta^{2}} \sum_{j=0}^{\infty} \sum_{q \in Q} \frac{a_{q}}{a_{q_{0}}}\left(\theta_{q, j+1}(W)+\delta_{q, s}\right) \beta^{-j}
$$

Remark [W. Steiner, M.R. '05]

By "normalizing" we can specify the value of $a_{a_{0}}$, why not take $a_{q_{0}}=1-\frac{1}{\beta}$?

Let $\beta=\beta_{q_{0}}$ and for any state q, define

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{u}_{q}(n)}{P_{q_{0}}(n) \beta^{n}}=a_{q} \in \mathbb{Q}(\beta), \quad a_{q_{0}}>0 \text { and } a_{q} \text { could be zero. }
$$

IF $\left(w_{n}\right)_{n \in \mathbb{N}}$ IS CONVERGING TO $W=W_{1} W_{2} \cdots$ THEN

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{val}\left(w_{n}\right)}{\mathbf{v}_{q_{0}}\left(\left|w_{n}\right|\right)}=\frac{\beta-1}{\beta^{2}} \sum_{j=0}^{\infty} \sum_{q \in Q} \frac{a_{q}}{a_{q_{0}}}\left(\theta_{q, j+1}(W)+\delta_{q, s}\right) \beta^{-j}
$$

Remark [W. Steiner, M.R. '05]
By "normalizing" we can specify the value of $a_{q_{0}}$, why not take $a_{q_{0}}=1-\frac{1}{\beta}$?

Let $\beta=\beta_{q_{0}}$ and for any state q, define

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{u}_{q}(n)}{P_{q_{0}}(n) \beta^{n}}=a_{q} \in \mathbb{Q}(\beta), \quad a_{q_{0}}>0 \text { and } a_{q} \text { could be zero. }
$$

IF $\left(w_{n}\right)_{n \in \mathbb{N}}$ IS CONVERGING TO $W=W_{1} W_{2} \cdots$ THEN

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{val}\left(w_{n}\right)}{\mathbf{v}_{q_{0}}\left(\left|w_{n}\right|\right)}=\frac{\beta-1}{\beta^{2}} \sum_{j=0}^{\infty} \sum_{q \in Q} \frac{a_{q}}{a_{q_{0}}}\left(\theta_{q, j+1}(W)+\delta_{q, s}\right) \beta^{-j}
$$

REMARK [W. Steiner, M.R. '05]

By "normalizing" we can specify the value of $a_{q_{0}}$, why not take $a_{q_{0}}=1-\frac{1}{\beta}$?

Doing so, we obtain something close to β-expansion...

$W=W_{1} W_{2} \cdots$

$$
x=\frac{1}{\beta}+\sum_{j=1}^{\infty} \alpha_{q_{0} \cdot W_{1} \cdots W_{j-1}}\left(W_{j}\right) \beta^{-j}
$$

where $\alpha_{q}(\sigma)=\sum_{\tau<\sigma} a_{q . \tau}$.

$q_{0}=s$ and $x_{0}=x \in\left[0, a_{s}\right)=[0,1-1 / \beta)$, $\left\lfloor\beta x_{0}\right\rfloor_{s}=a_{s . a}+a_{s . b}=\alpha_{s}(c) \quad w_{1}=c$
$q_{1}=s . c$ and $x_{1}=\beta x_{0}-\left\lfloor\beta x_{0}\right\rfloor_{s} \in\left[0, a_{s . c}\right)$

$q_{0}=s$ and $x_{0}=x \in\left[0, a_{s}\right)=[0,1-1 / \beta)$,

$$
\left\lfloor\beta x_{0}\right\rfloor_{s}=a_{s . a}+a_{s . b}=\alpha_{s}(c) \quad w_{1}=c
$$

$$
q_{1}=s . c \text { and } x_{1}=\beta x_{0}-\left\lfloor\beta x_{0}\right\rfloor_{s} \in\left[0, a_{s . c}\right)
$$

$$
\left\lfloor\beta x_{1}\right\rfloor_{s . c}=a_{s . c a}+a_{s . c b}=\alpha_{s . c}(c) \quad w_{2}=c
$$

$q_{0}=s$ and $x_{0}=x \in\left[0, a_{s}\right)=[0,1-1 / \beta)$,

$$
\left\lfloor\beta x_{0}\right\rfloor_{s}=a_{s . a}+a_{s . b}=\alpha_{s}(c) \quad w_{1}=c
$$

$$
q_{1}=s . c \text { and } x_{1}=\beta x_{0}-\left\lfloor\beta x_{0}\right\rfloor_{s} \in\left[0, a_{s . c}\right)
$$

$$
\left\lfloor\beta x_{1}\right\rfloor_{s . c}=a_{s . c a}+a_{s . c b}=\alpha_{s . c}(c) \quad w_{2}=c
$$

$$
q_{2}=s . c c \text { and } x_{2}=\beta x_{1}-\left\lfloor\beta x_{1}\right\rfloor_{s . c} \in\left[0, a_{s . c c}\right)
$$

$q_{0}=s$ and $x_{0}=x \in\left[0, a_{s}\right)=[0,1-1 / \beta)$,

$$
\left\lfloor\beta x_{0}\right\rfloor_{s}=a_{s . a}+a_{s . b}=\alpha_{s}(c) \quad w_{1}=c
$$

$$
q_{1}=s . c \text { and } x_{1}=\beta x_{0}-\left\lfloor\beta x_{0}\right\rfloor_{s} \in\left[0, a_{s . c}\right)
$$

$$
\left\lfloor\beta x_{1}\right\rfloor_{s . c}=a_{s . c a}+a_{s . c b}=\alpha_{s . c}(c) \quad w_{2}=c
$$

$$
q_{2}=s . c c \text { and } x_{2}=\beta x_{1}-\left\lfloor\beta x_{1}\right\rfloor_{s . c} \in\left[0, a_{s . c c}\right)
$$

$$
\cdots \quad T_{S}:(x, q) \mapsto\left(\beta x-\lfloor\beta x\rfloor_{q}, q^{\prime}\right)
$$

Here we go Again

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

Here we go Again

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

Here we go Again

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation

Here we go Again

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation...

Here we go Again

- Which numbers have several representations
- Determine numbers with (ultimately) periodic expansion
- Conditions to have a ring structure
- Study the dynamic of the transformation...
http://www.discmath.ulg.ac.be

