Classes of Rational Graphs

Christophe Morvan

Irisa

Journées Montoises 2006

- Definitions
 Notations
 Rational Graphs
- 2 Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- 3 Automata defined families Automatic Graphs Monotonous Rational Graphs Commutative Rational Graphs
- Conclusion and future works

- Definitions
 Notations
 Rational Graphs
- Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- 3 Automata defined families Automatic Graphs Monotonous Rational Graphs Commutative Rational Graphs
- Conclusion and future works

- Definitions
 Notations
 Rational Graphs
- 2 Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- 3 Automata defined families Automatic Graphs Monotonous Rational Graphs Commutative Rational Graphs
- Conclusion and future works

- Definitions
 Notations
 Rational Graphs
- Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- Automata defined families Automatic Graphs Monotonous Rational Graphs Commutative Rational Graphs
- 4 Conclusion and future works

- Definitions
 Notations
 Rational Graphs
- 2 Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- 3 Automata defined families Automatic Graphs Monotonous Rational Graphs Commutative Rational Graphs
- 4 Conclusion and future works

Graphs

A graphe G is a subset of $V \times A \times V$

- ullet V is an arbitrary set of vertices
- A is a finite set of labels

Conventions

$$(u, a, v)$$
 is denoted by $u \xrightarrow{a} v$

Graphs

A graphe G is a subset of $V \times A \times V$

- *V* is an arbitrary set of vertices
- A is a finite set of labels

Conventions

(u, a, v) is denoted by $u \xrightarrow{a} v$

Graphs

A graphe G is a subset of $V \times A \times V$

- V is an arbitrary set of vertices
- A is a finite set of labels

Conventions

$$(u, a, v)$$
 is denoted by $u \xrightarrow{a} v$

For rational graphs $V := X^*$ (X some finite alphabet)

Graphs

A graphe G is a subset of $V \times A \times V$

- V is an arbitrary set of vertices
- A is a finite set of labels

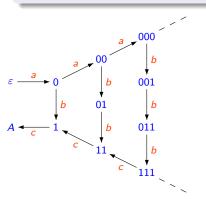
Conventions

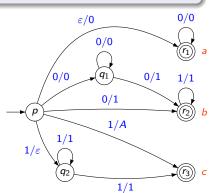
(u, a, v) is denoted by $u \xrightarrow{a} v$

For rational graphs $V := X^*$ (X some finite alphabet)

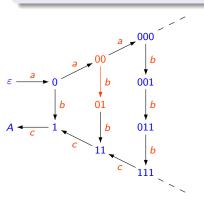
Graphs

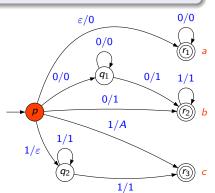
A graphe G is a subset of $V \times A \times V$

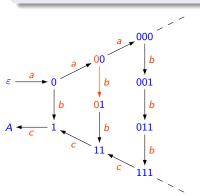

- V is an arbitrary set of vertices
- A is a finite set of labels

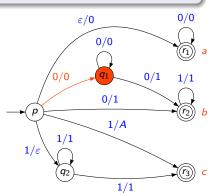

Conventions

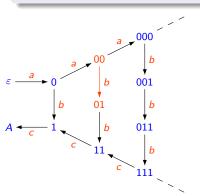
$$(u, a, v)$$
 is denoted by $u \xrightarrow{a} v$

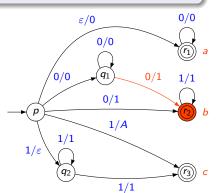

For rational graphs $V := X^*$ (X some finite alphabet)

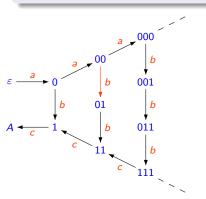

Definition

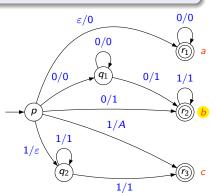



Definition

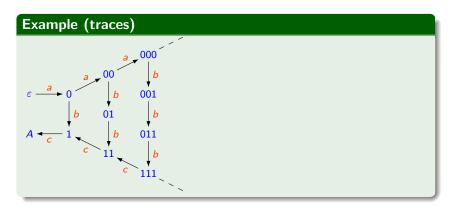



Definition



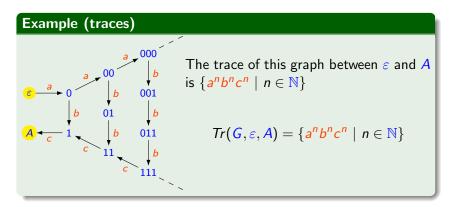

Definition

Definition

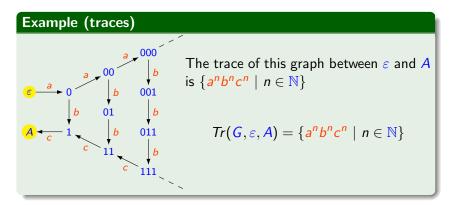


Classical questions

Proposition


Following properties are undecidable for rational graphs:

- (i) Accessibility (between two vertices);
- (ii) Connectedness (of the whole graph);
- (iii) Isomorphism (of two graphs);
- (iv) First order theory (of a rational graph).


Theorem (Morvan Stirling 01)

The traces of rational graphs between two vertices coincide with the context sensitive languages.

Theorem (Morvan Stirling $oldsymbol{01}$

The traces of rational graphs between two vertices coincide with the context sensitive languages.

Theorem (Morvan Stirling 01)

The traces of rational graphs between two vertices coincide with the context sensitive languages.

- Definitions
 Notations
 Rational Graphs
- Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- 3 Automata defined families Automatic Graphs Monotonous Rational Graphs Commutative Rational Graphs
- 4 Conclusion and future works

Deterministic Rational Graphs

Definition

A rational graph is deterministic if each vertex is the source of at most on arc for each label

Proposition

Determinism is decidable for rational graphs

Proposition

First order theory and accessibility are undecidable for deterministic rational graphs

Deterministic Rational Graphs

Definition

A rational graph is deterministic if each vertex is the source of at most on arc for each label

Proposition

Determinism is decidable for rational graphs

Proposition

First order theory and accessibility are undecidable for deterministic rational graphs

Deterministic Rational Graphs

Definition

A rational graph is deterministic if each vertex is the source of at most on arc for each label

Proposition

Determinism is decidable for rational graphs

Proposition

First order theory and accessibility are undecidable for deterministic rational graphs

Proposition

The traces of deterministic rational graphs form a boolean algebra of deterministic context-sensitive languages containing non context-free languages.

Question

Are there context-free languages not contained in the traces of deterministic rational graphs?

Proposition

The traces of deterministic rational graphs form a boolean algebra of deterministic context-sensitive languages containing non context-free languages.

Question

Are there context-free languages not contained in the traces of deterministic rational graphs?

Proposition

The traces of deterministic rational graphs form a boolean algebra of deterministic context-sensitive languages containing non context-free languages.

Question

Are there context-free languages not contained in the traces of deterministic rational graphs?

Rational Trees

Definition (Tree)

- at most one ancestor per vertex

decidable

Rational Trees

Definition (Tree)

- at most one ancestor per vertex
- a single root
- connected

decidable

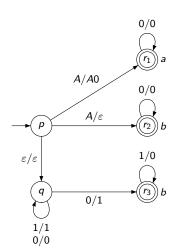
decidable

undecidable

Rational Trees

Definition (Tree)

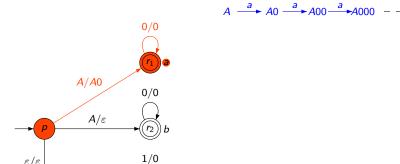
• at most one ancestor per vertex

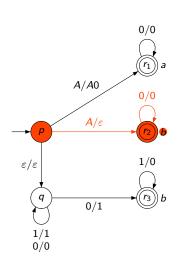

decidable

• a single root

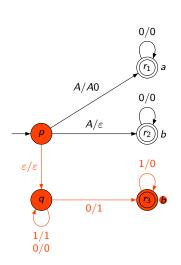
decidable

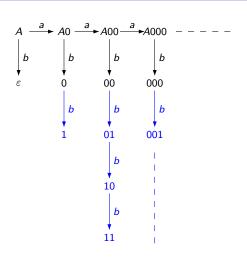
connected


undecidable



 ε/ε


 $\frac{1}{1}$


0/1

Properties of rational trees

Proposition

For rational trees

- inclusion and equality is decidable
- accessibility (between vertices) is decidable
- effective rational set of leaves
- some sub-trees are non-rational

Properties of rational trees

Proposition

For rational trees

- inclusion and equality is decidable
- accessibility (between vertices) is decidable
- effective rational set of leaves
- some sub-trees are non-rational

Theorem (Carayol Morvan 06)

Proposition

For rational trees

- inclusion and equality is decidable
- accessibility (between vertices) is decidable
- effective rational set of leaves
- some sub-trees are non-rational

Theorem (Carayol Morvan 06)

Proposition

For rational trees

- inclusion and equality is decidable
- accessibility (between vertices) is decidable
- effective rational set of leaves
- some sub-trees are non-rational

Theorem (Carayol Morvan 06

First order theory of rational trees decidable
 First order theory with accessibility of rational trees

Proposition

For rational trees

- inclusion and equality is decidable
- accessibility (between vertices) is decidable
- effective rational set of leaves
- some sub-trees are non-rational

Theorem (Carayol Morvan 06)

- First order theory of rational trees decidable
- First order theory with accessibility of rational trees undecidable

Proposition

For rational trees

- inclusion and equality is decidable
- accessibility (between vertices) is decidable
- effective rational set of leaves
- some sub-trees are non-rational

Theorem (Carayol Morvan 06)

- First order theory of rational trees decidable
- First order theory with accessibility of rational trees undecidable

Traces

Definition

The trace of a tree is the set of path labels from the root to the leaves

Conjecture

There are context-free languages which are not the trace of any rational tree

Example

The set of words having the same number of a's and b's seems not to be the trace of any rational tree

Traces

Definition

The trace of a tree is the set of path labels from the root to the leaves

Conjecture

There are context-free languages which are not the trace of any rational tree

Example

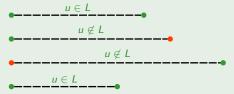
The set of words having the same number of a's and b's seems not to be the trace of any rational tree

Traces

Definition

The trace of a tree is the set of path labels from the root to the leaves

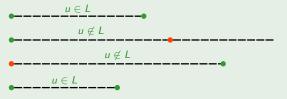
Conjecture


There are context-free languages which are not the trace of any rational tree

Example

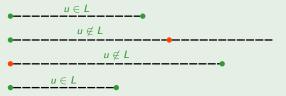
The set of words having the same number of a's and b's seems not to be the trace of any rational tree

Example


Given any context-sensitive language L we may construct such a rational graph (green and red states form rational sets)

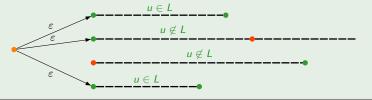
Proposition

Example


Given any context-sensitive language L we may construct such a rational graph (green and red states form rational sets)

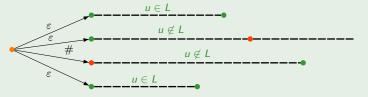
Proposition

Example


Given any context-sensitive language L we may construct such a rational graph (green and red states form rational sets)

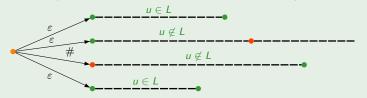
Proposition

Example


Given any context-sensitive language \boldsymbol{L} we may construct such a rational graph (green and red states form rational sets)

Proposition

Example


Given any context-sensitive language \boldsymbol{L} we may construct such a rational graph (green and red states form rational sets)

Proposition

Example

Given any context-sensitive language L we may construct such a rational graph (green and red states form rational sets)

Proposition

Rational forests

Proposition

It is undecidable to know if a rational graph is a forest

Proposition

The first order theory of rational forests is decidable

Proposition

The trace of rational forests between a root and leaves coincide with context-sensitive languages

Rational forests

Proposition

It is undecidable to know if a rational graph is a forest

Proposition

The first order theory of rational forests is decidable

Proposition

The trace of rational forests between a root and leaves coincide with context-sensitive languages

Rational forests

Proposition

It is undecidable to know if a rational graph is a forest

Proposition

The first order theory of rational forests is decidable

Proposition

The trace of rational forests between a root and leaves coincide with context-sensitive languages

Rational Directed Acyclic Graphs

Definition

A rational DAG is a rational graph with no cycle

Proposition

It is undecidable to know if a rational graph is a DAG

Proposition

There is a connected rational DAG with undecidable first-order theory

Rational Directed Acyclic Graphs

Definition

A rational DAG is a rational graph with no cycle

Proposition

It is undecidable to know if a rational graph is a DAG

Proposition

There is a connected rational DAG with undecidable first-order theory

Rational Directed Acyclic Graphs

Definition

A rational DAG is a rational graph with no cycle

Proposition

It is undecidable to know if a rational graph is a DAG

Proposition

There is a connected rational DAG with undecidable first-order theory

Plan

- Definitions
 Notations
 Rational Graphs
- 2 Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- 3 Automata defined families Automatic Graphs Monotonous Rational Graphs Commutative Rational Graphs
- 4 Conclusion and future works

Definition

A graph over $X^* \times A \times X^*$ is automatic if it is recognized by a letter-to-letter transducer followed by a terminal function taking values in

$$(Rat(X^*) \times \{\varepsilon\}) \cup (\{\varepsilon\} \times Rat(X^*))$$

Example

The previous examples $(a^n b^n c^n$ -graph and 2^n -tree) are automatic

Proposition (Hodgson 83)

The first order theory of automatic graphs is decidable

Theorem (Rispal 01

Definition

A graph over $X^* \times A \times X^*$ is automatic if it is recognized by a letter-to-letter transducer followed by a terminal function taking values in

$$(Rat(X^*) \times \{\varepsilon\}) \cup (\{\varepsilon\} \times Rat(X^*))$$

Example

The previous examples $(a^n b^n c^n$ -graph and 2^n -tree) are automatic

Proposition (Hodgson 83)

The first order theory of automatic graphs is decidable

Theorem (Rispal 01

Definition

A graph over $X^* \times A \times X^*$ is automatic if it is recognized by a letter-to-letter transducer followed by a terminal function taking values in

$$(Rat(X^*) \times \{\varepsilon\}) \cup (\{\varepsilon\} \times Rat(X^*))$$

Example

The previous examples $(a^n b^n c^n$ -graph and 2^n -tree) are automatic

Proposition (Hodgson 83)

The first order theory of automatic graphs is decidable

Theorem (Rispal 01

Definition

A graph over $X^* \times A \times X^*$ is automatic if it is recognized by a letter-to-letter transducer followed by a terminal function taking values in

$$(Rat(X^*) \times \{\varepsilon\}) \cup (\{\varepsilon\} \times Rat(X^*))$$

Example

The previous examples $(a^n b^n c^n$ -graph and 2^n -tree) are automatic

Proposition (Hodgson 83)

The first order theory of automatic graphs is decidable

Theorem (Rispal 01)

Monotonous Rational Graphs

Definition

A rational graph is monotonous if for each transition u/v of its transducer either satisfy $|u|\leqslant |v|$ or $|u|\geqslant |v|$

Proposition

Accessibility is decidable for monotonous graphs

Question

Is the first order theory of monotonous graphs decidable?

Monotonous Rational Graphs

Definition

A rational graph is monotonous if for each transition u/v of its transducer either satisfy $|u|\leqslant |v|$ or $|u|\geqslant |v|$

Proposition

Accessibility is decidable for monotonous graphs

Question

Is the first order theory of monotonous graphs decidable?

Monotonous Rational Graphs

Definition

A rational graph is monotonous if for each transition u/v of its transducer either satisfy $|u|\leqslant |v|$ or $|u|\geqslant |v|$

Proposition

Accessibility is decidable for monotonous graphs

Question

Is the first order theory of monotonous graphs decidable?

Traces of monotonous graphs

Proposition

From each rational graph a bisimilar monotonous graph is computable

Corollary

The traces of monotonous graphs are context-sensitive languages

Traces of monotonous graphs

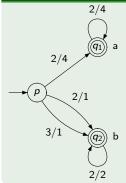
Proposition

From each rational graph a bisimilar monotonous graph is computable

Corollary

The traces of monotonous graphs are context-sensitive languages

Definition (Commutative graphs)

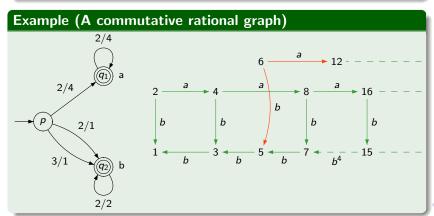

A rational graph is commutative if its transducer is defined over a commutative monoid $(\mathbb{N}^n, \mathbb{Z}^n)$

Example (A commutative rational graph)

Definition (Commutative graphs)

A rational graph is commutative if its transducer is defined over a commutative monoid $(\mathbb{N}^n, \mathbb{Z}^n)$

Example (A commutative rational graph)


Definition (Commutative graphs)

A rational graph is commutative if its transducer is defined over a commutative monoid $(\mathbb{N}^n, \mathbb{Z}^n)$

Example (A commutative rational graph) 2/4 2/4

Definition (Commutative graphs)

A rational graph is commutative if its transducer is defined over a commutative monoid $(\mathbb{N}^n, \mathbb{Z}^n)$

Definition (Commutative graphs)

A rational graph is commutative if its transducer is defined over a commutative monoid $(\mathbb{N}^n, \mathbb{Z}^n)$

Example (A commutative rational graph) 2/4 2/4 3/1 $Tr(G,2,1) = \left\{a^n b^{2^n} \mid n \in \mathbb{N}\right\} \not\in CF(\left\{a,b\right\}^*)$

Theorem (Eilenberg, Schützenberger 69)

The family of rational sets in a commutative monoid form a Boolean algebra

Corollary

First order theory is decidable for commutative graphs

Proposition

Accessibility is undecidable for commutative rational graphs

Proposition

Theorem (Eilenberg, Schützenberger 69)

The family of rational sets in a commutative monoid form a Boolean algebra

Corollary

First order theory is decidable for commutative graphs

Proposition

Accessibility is undecidable for commutative rational graphs

Proposition

Theorem (Eilenberg, Schützenberger 69)

The family of rational sets in a commutative monoid form a Boolean algebra

Corollary

First order theory is decidable for commutative graphs

Proposition

Accessibility is undecidable for commutative rational graphs

Proposition

Theorem (Eilenberg, Schützenberger 69)

The family of rational sets in a commutative monoid form a Boolean algebra

Corollary

First order theory is decidable for commutative graphs

Proposition

Accessibility is undecidable for commutative rational graphs

Proposition

Plan

- Definitions
 Notations
 Rational Graphs
- Structure defined families Deterministic Rational Graphs Rational Trees Rational DAG
- Automata defined families
 Automatic Graphs
 Monotonous Rational Graphs
 Commutative Rational Graphs
- 4 Conclusion and future works

Conclusion

Several families of rational graphs

Deterministic rational graphs

Structural Rational trees

Rational DAG

Automata driven

Future work

Deterministic rational graphs, Monotonous rational graphs, Commutative rational graphs

Conclusion

Several families of rational graphs

Deterministic rational graphs

• Structural Rational trees

Rational DAG

Automatic graphs

Automata driven
 Monotonous rational graphs

Commutative rational graphs

Future work

Some families are promising

Deterministic rational graphs, Monotonous rational graphs

Commutative rational graphs

Exhibit a such a family with FO+ACC decidable

Conclusion

Several families of rational graphs

Deterministic rational graphs

• Structural Rational trees

Rational DAG

Automatic graphs

Automata driven Monotonous rational graphs

Commutative rational graphs

Future work

Some families are promising
 Deterministic rational graphs, Monotonous rational graphs,
 Commutative rational graphs

Exhibit a such a family with FO+ACC decidable

Conclusion

Several families of rational graphs

Deterministic rational graphs

Structural Rational trees

Rational DAG

Automatic graphs

Automata driven Monotonous rational graphs

Commutative rational graphs

Future work

- Some families are promising
 Deterministic rational graphs, Monotonous rational graphs,
 Commutative rational graphs
- Exhibit a such a family with FO+ACC decidable