Dichotomies and Duality in First-order Model Checking Problems

Barnaby Martin

Department of Computer Science University of Durham

Journées Montoises 2006, Rennes.

Outline

The Model Checking Problem

Definition Known results & Scope of this talk

Logics of Classes I and II

 $\{\land, \exists\}$ -FO and the CSP Partial dichotomy results for the CSP $\{\lor, \exists\}$ -FO, $\{\lor, \exists, =\}$ -FO, $\{\land, \forall\}$ -FO and $\{\land, \forall, =\}$ -FO $\{\land, \exists, =\}$ -FO $\{\lor, \forall\}$ -FO $\{\lor, \forall, =\}$ -FO

Logics of Class III

$$\{\land,\lor,\exists\}$$
-FO $\{\land,\lor,\exists,=\}$ -FO, $\{\land,\lor,\forall\}$ -FO and $\{\land,\lor,\forall,=\}$ -FO

Conclusion and Further Work

Fix a logic $\mathcal L.$ The model checking problem over $\mathcal L$ may be defined to have

- Input: a structure (model) A and a sentence φ of \mathcal{L} .
- Question: does $A \models \varphi$?

The complexity of this problem is sometimes known as the *combined complexity* of \mathcal{L} .

Fix a logic $\mathcal L.$ The model checking problem over $\mathcal L$ may be defined to have

- Input: a structure (model) A and a sentence φ of \mathcal{L} .
- Question: does $A \models \varphi$?

The complexity of this problem is sometimes known as the *combined complexity* of \mathcal{L} .

This problem can be parameterised, either by the sentence φ , in which case the input is just *A*; or by the model *A*, in which case the input is just φ .

The maximal complexity of the problem parameterised by φ is known as the *data complexity* of \mathcal{L} ; the maximal complexity of the problem parameterised by A is known as the *expression complexity* of \mathcal{L} .

Definition Known results & Scope of this talk

Vardi has studied this problem, mostly for logics which subsume FO.

logic	complexity		
	data	expression	combined
q.f. FO	Logspace	Logspace	Logspace
FO	Logspace	Pspace	Pspace
TC	NLogspace	(N)Pspace	(N)Pspace
LFP	Р	Exptime	Exptime
∃SO	NP	NExptime	NExptime

In all cases, these complexities are complete with respect to Logspace reductions. In most¹ of the cases it may be seen that the expression and combined complexities coincide, and are one exponential higher than the data complexity.

¹Indeed, in all but the first. The first case is slightly anachronistic anyway since being Logspace-hard under Logspace reduction is trivial.

University

Of Durham

Definition Known results & Scope of this talk

We will be interested only in logics \mathcal{L} which are fragments of **FO**, and only in the parameterisation of their model checking problem by the model A. The fragments of **FO** which we consider derive from restricting which of the symbols of $\Gamma_1 := \{\neg, \land, \lor, \exists, \forall, =\}$ we allow. For example, we consider $\{\land, \exists\}$ -**FO** to be that fragment of **FO** without negation, disjunction, universal quantification or equality.

Definition Known results & Scope of this talk

We will be interested only in logics \mathcal{L} which are fragments of **FO**, and only in the parameterisation of their model checking problem by the model A. The fragments of **FO** which we consider derive from restricting which of the symbols of $\Gamma_1 := \{\neg, \land, \lor, \lor, \exists, \forall, =\}$ we allow. For example, we consider $\{\land, \exists\}$ -**FO** to be that fragment of **FO** without negation, disjunction, universal quantification or equality. For any $\Gamma \subseteq \Gamma_1$ we define the logic Γ -**FO** similarly, and we define the problem Γ -MC(A) to have

- Input: a sentence φ of Γ-**FO**.
- Question: does $A \models \varphi$?

The maximal complexity of this over all *A* is therefore the expression complexity of Γ -**FO**.

< ロ > < 同 > < 回 > < 回 >

Durham

Definition Known results & Scope of this talk

The case for $\{\neg, \land, \lor, \exists, \forall, =\}$ -**FO**, i.e. full first-order logic, is addressed by Vardi. It is known that $\{\neg, \land, \lor, \exists, \forall, =\}$ -MC(*A*), that is the problem

- lnput: a sentence φ of **FO**.
- Question: does $A \models \varphi$?

is Pspace-complete, if ||A|| > 1; and in Logspace if ||A||=1.

The case for $\{\neg, \land, \lor, \exists, \forall, =\}$ -**FO**, i.e. full first-order logic, is addressed by Vardi. It is known that $\{\neg, \land, \lor, \exists, \forall, =\}$ -MC(*A*), that is the problem

- Input: a sentence φ of **FO**.
- Question: does $A \models \varphi$?

is Pspace-complete, if ||A|| > 1; and in Logspace if ||A||=1. Pspace-hardness may be proved by reduction from *quantified satisfiability* (QSAT); Logspace membership comes via the (propositional) *boolean sentence value problem*.

The case for $\{\neg, \land, \lor, \exists, \forall, =\}$ -**FO**, i.e. full first-order logic, is addressed by Vardi. It is known that $\{\neg, \land, \lor, \exists, \forall, =\}$ -MC(*A*), that is the problem

- Input: a sentence φ of **FO**.
- Question: does $A \models \varphi$?

is Pspace-complete, if ||A|| > 1; and in Logspace if ||A||=1. Pspace-hardness may be proved by reduction from *quantified satisfiability* (QSAT); Logspace membership comes via the (propositional) *boolean sentence value problem*. Similarly, it is known that $\{\neg, \land, \lor, \exists, \forall\}$ -MC(*A*) is Pspace-complete if *A* contains any non-trivial relation (i.e. a relation that is non-empty and does not contain all tuples) and is in Logspace otherwise.

Definition Known results & Scope of this talk

In this talk, we will be concerned with purely relational signatures and with those non-trivial positive fragments of **FO** which contain exactly one of the quantifiers. We have 12 cases to consider.

Definition Known results & Scope of this talk

In this talk, we will be concerned with purely relational signatures and with those non-trivial positive fragments of **FO** which contain exactly one of the quantifiers. We have 12 cases to consider.

The model checking problem associated with the first logic of Class II, $\{\land, \exists\}$ -**FO**, is essentially the *constaint satisfaction problem* (CSP).

< ロ > < 同 > < 回 > < 回 >

Durham

 $\begin{array}{l} \{ \land, \exists \} \text{-FO} \text{ and the CSP} \\ \text{Partial olichotomy results for the CSP} \\ \{ \lor, \exists \} \text{-FO}, \{ \lor, \exists, = \} \text{-FO}, \{ \land, \lor \} \text{-FO} \text{ and } \{ \land, \lor, = \} \text{-FO} \\ \{ \land, \exists, = \} \text{-FO} \\ \{ \lor, \lor, = \} \text{-FO} \\ \{ \lor, \lor, = \} \text{-FO} \end{array}$

The problem $\{\land, \exists\}$ -MC(A), that is the problem

- Input: a sentence φ of $\{\wedge, \exists\}$ -FO.
- Question: does $A \models \varphi$?

is better known as the constraint satisfaction problem CSP(A).

 $^2 This conjecture was originally due to Feder and Vardi, although they gave no separating criterion. Bulatov, subsequently, conjectured a separating criterion. <math display="inline">{}_{\equiv}$

 $\begin{array}{l} \{\land, 3\}\text{-FO} \text{ and the CSP} \\ \text{Partial dichotomy results for the CSP} \\ \{\vee, 3\}\text{-FO}, \{\vee, \forall, \exists, =\}\text{-FO}, \{\land, \forall\}\text{-FO} \text{ and } \{\land, \forall, =\}\text{-FO} \\ \{\land, a, =\}\text{-FO} \\ \{\vee, \forall, =\}\text{-FO} \\ \{\vee, \forall, =\}\text{-FO} \end{array}$

The problem $\{\land, \exists\}$ -MC(A), that is the problem

- Input: a sentence φ of $\{\wedge, \exists\}$ -FO.
- Question: does $A \models \varphi$?

is better known as the *constraint satisfaction problem* CSP(A). The question as to the precise complexity of this problem, over various *A*, has attracted much attention. The problem is always in NP and is often NP-complete, although cases in P are known. It is conjectured² that the problem is always either in P or NP-complete. This so-called CSP *dichotomy conjecture* remains open, but it has been settled for certain classes of model.

 $^2 This conjecture was originally due to Feder and Vardi, although they gave no separating criterion. Bulatov, subsequently, conjectured a separating criterion. <math display="inline">{}_{\equiv}$

- ► (Schaefer 1978) Dichotomy when ||A|| ≤ 2 (i.e. on boolean models); recently extended to
- (Bulatov 2002) Dichotomy when $||A|| \leq 3$.
- (Hell/Nešetřil 1990) Dichotomy when A ranges over undirected graphs.

Specifically: if A has a self-loop or is bipartite, then $\{\land, \exists\}$ -MC(A) is in P, otherwise it is NP-complete.

Whilst we can not answer the dichotomy conjecture in general, it provides the motivation for us to consider the analagous model checking problems for logics similar to $\{\lor, \exists\}$ -**FO**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

of Durham

 $\begin{array}{ll} \{ \Lambda, \exists \} \textbf{-F0} \text{ and the CSP} \\ \mbox{Logics of Classes I and II} \\ \mbox{Logics of Class III} \\ \mbox{Conclusion and Further Work} \end{array} \begin{array}{l} \{ \Lambda, \exists \} \textbf{-F0} \text{ or } \{ \Lambda, \forall \} \textbf{-$

But we have run ahead of ourselves. Let us consider the model checking problems associated with the logics of Class I: { \lor , \exists }-FO, { \lor , \exists ,=}-FO, { \land , \forall }-FO and { \land , \forall ,=}-FO.

The Model Checking Problem Partial dichotomy results for the CSP
Logics of Classes I and II
Logics of Class III
$$\{\land, \exists, =\}$$
-FO, $\{\land, \forall\}$ -FO and $\{\land, \forall, =\}$ -FO
Conclusion and Further Work $\{\lor, \forall, =\}$ -FO
 $\{\lor, \forall, =\}$ -FO

But we have run ahead of ourselves. Let us consider the model checking problems associated with the logics of Class I: $\{\lor, \exists\}$ -FO, $\{\lor, \exists, =\}$ -FO, $\{\land, \forall\}$ -FO and $\{\land, \forall, =\}$ -FO. It turns out that none of these model checking problems is particularly hard, indeed, they are all in Logspace. We will prove this for $\{\lor, \exists\}$ -MC(*A*) where *A* is any digraph. We may consider any input to be prenex and of the form

$$\varphi := \exists \mathbf{v} \ E(\mathbf{v}_1, \mathbf{v}_1') \lor \ldots \lor E(\mathbf{v}_m, \mathbf{v}_m')$$

But to establish whether $A \models \varphi$, we need only cycle through $||A||^2$ pairs, looking for a witness to a disjunct.

 $\begin{array}{ll} \{ \Lambda, \exists \} \textbf{-F0} \text{ and the CSP} \\ \text{Logics of Classes I and II} \\ \text{Logics of Class II} \\ \text{Conclusion and Further Work} \end{array} \begin{array}{l} \{ \Lambda, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall \} \textbf{-F0}$

We have already discussed $\{\land, \exists\}$ -**FO** and its model checking problem – also known as the CSP. Owing to the rule of substitution, the logic $\{\land, \exists\}$ -**FO** is very nearly as expressive as $\{\land, \exists, =\}$ -**FO**. From the perspective of the complexity of their model checking problems, we consider them the same.

³That is, for each R_i^A , the relation $R_i^{\overline{A}}$ is defined by $\mathbf{x} \in R_i^{\overline{A}}$ iff $\mathbf{x} \notin R_i^A$.

 $\begin{array}{ll} \{ \Lambda, \exists \} \textbf{-FO} \text{ and the CSP} \\ \text{Logics of Classes I and II} \\ \text{Logics of Class II} \\ \text{Conclusion and Further Work} \end{array} \begin{array}{l} \{ \Lambda, \exists \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall, \forall \} \textbf{-FO} \text{ of } \{ \nabla, \forall \} \textbf{-FO} \text{ of$

We have already discussed $\{\land, \exists\}$ -FO and its model checking problem – also known as the CSP. Owing to the rule of substitution, the logic $\{\land, \exists\}$ -FO is very nearly as expressive as $\{\land, \exists, =\}$ -FO. From the perspective of the complexity of their model checking problems, we consider them the same.

► For a model A, we define its complement A to have the same universe as A, but with relations which are the (set-theoretic) complements of the relations of A³.

³That is, for each R_i^A , the relation $R_i^{\overline{A}}$ is defined by $\mathbf{x} \in R_i^{\overline{A}}$ iff $\mathbf{x} \notin R_i^A$.

 $\begin{array}{ll} \{ \Lambda, \exists \} \textbf{-F0} \text{ and the CSP} \\ \text{Logics of Classes I and II} \\ \text{Logics of Class II} \\ \text{Conclusion and Further Work} \end{array} \begin{array}{l} \{ \Lambda, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \exists \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall \} \textbf{-F0} \text{ of } \{ \Lambda, \forall \} \textbf{-F0}$

We have already discussed $\{\land, \exists\}$ -FO and its model checking problem – also known as the CSP. Owing to the rule of substitution, the logic $\{\land, \exists\}$ -FO is very nearly as expressive as $\{\land, \exists, =\}$ -FO. From the perspective of the complexity of their model checking problems, we consider them the same.

► For a model A, we define its complement A to have the same universe as A, but with relations which are the (set-theoretic) complements of the relations of A³.

This brings us on to the logic $\{\lor, \forall\}$ -FO, which is dual to $\{\land, \exists\}$ -FO in the following sense.

³That is, for each R_i^A , the relation $R_i^{\overline{A}}$ is defined by $\mathbf{x} \in R_i^{\overline{A}}$ iff $\mathbf{x} \notin R_i^A$.

 $\begin{array}{ll} \{ \land, \exists \} \text{-FO} \text{ and the CSP} \\ \text{Logics of Classes I and II} \\ \text{Logics of Classes I and II} \\ \text{Logics of Class III} \\ \text{Conclusion and Further Work} \end{array} \begin{array}{ll} \{ \land, \exists \} \text{-FO}, \{ \land, \forall \} \text{-FO} \text{ and } \{ \land, \forall, = \} \text{-FO} \\ \{ \land, \exists, = \} \text{-FO}, \{ \land, \forall \} \text{-FO} \text{ and } \{ \land, \forall, = \} \text{-FO} \\ \{ \lor, \forall, = \} \text{-FO} \\ \{ \lor, \forall, = \} \text{-FO} \end{array}$

Consider a prenex sentence φ of $\{\lor, \forall\}$ -FO

$$\varphi := \forall \mathbf{v} \ R_{\alpha_1}(\mathbf{v_1}) \lor \ldots \lor R_{\alpha_m}(\mathbf{v_m})$$

Now, $A \not\models \varphi$ iff

 $\overline{A} \models \varphi'$, where

$$\varphi' := \exists \mathbf{v} \ \mathbf{R}_{\alpha_1}(\mathbf{v_1}) \land \ldots \land \mathbf{R}_{\alpha_m}(\mathbf{v_m}).$$

It follows that $\{\lor, \forall\}$ -MC(A) and the complement of $\{\land, \exists\}$ -MC(\overline{A}) are equivalent under, e.g., Logspace reductions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Of Durham

 $\begin{array}{ll} \{\wedge, \exists\} \text{-} FO \text{ and the CSP} \\ \text{Partial dichotomy results for the CSP} \\ \text{Logics of Classes I and II} \\ \text{Logics of Class III} \\ \text{Conclusion and Further Work} \end{array} \begin{array}{ll} \{\vee, \exists\} \text{-} FO, \{\vee, \exists, =\} \text{-} FO, \{\wedge, \forall\} \text{-} FO \text{ and } \{\wedge, \forall, =\} \text{-} FO \\ \{\vee, \forall\} \text{-} FO \\ \{\vee, \forall\} \text{-} FO \end{array}$

This reduction demonstrates that $\{\lor, \forall\}$ -MC(*A*) is always in co-NP, and that, if we choose some *A* such that $\{\land, \exists\}$ -MC(\overline{A}) is NP-complete, then $\{\lor, \forall\}$ -MC(*A*) is co-NP-complete. This tells us that the classification problem for $\{\lor, \forall\}$ -MC(*A*) is as hard as that for $\{\land, \exists\}$ -MC(*A*), and that a dichotomy holds for the former (between P and co-NP-complete) iff it holds for the latter (between P and NP-complete).

For structures A such that ||A|| ≥ 3, the problem {∨, ∀, =}-MC(A) is co-NP-complete.

For structures A such that ||A|| ≥ 3, the problem {∨, ∀, =}-MC(A) is co-NP-complete.

In fact, thanks to Schaefer's dichotomy on boolean models, we can go further, obtaining a complete classification.

For structures A such that ||A|| ≥ 3, the problem {∨, ∀, =}-MC(A) is co-NP-complete.

In fact, thanks to Schaefer's dichotomy on boolean models, we can go further, obtaining a complete classification.

► For a model *A*, define *R*_A to be the cartesian product of the non-empty relations of *A*.

For structures A such that ||A|| ≥ 3, the problem {∨, ∀, =}-MC(A) is co-NP-complete.

In fact, thanks to Schaefer's dichotomy on boolean models, we can go further, obtaining a complete classification.

- ► For a model *A*, define *R*_A to be the cartesian product of the non-empty relations of *A*.
- ▶ The *a*-ary relation $R \subseteq |A|^a$ is said to be *x*-valid, for some $x \in A$, iff $(x^a) = (x, ..., x) \in R$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Durham

 $\begin{array}{ll} \{ \Lambda, \exists \} \text{-FO} \text{ and the CSP} \\ \text{Logics of Classes I and II} \\ \text{Logics of Class II} \\ \text{Conclusion and Further Work} \end{array} \begin{array}{l} \{ \Lambda, \exists \} \text{-FO} \text{ and the CSP} \\ \{ \Psi, \exists \} \text{-FO}, \{ \Lambda, \forall \} \text{-FO} \text{ and } \{ \Lambda, \forall, = \} \text{-FO} \\ \{ \Psi, \exists \} \text{-FO} \text{ and } \{ \Lambda, \forall, = \} \text{-FO} \\ \{ \Psi, \forall \} \text{-FO} \text{ and } \{ \Lambda, \forall, = \} \text{-FO} \end{array} \right.$

In full generality, the class of problems $\{\lor, \forall, =\}$ -MC(*A*) exhibits dichotomy, between those cases that are in P and those that are co-NP-complete. Specifically:

- If ||A|| = 1, then the problem $\{\lor, \forall, =\}$ -MC(A) is in P.
- ▶ If ||*A*|| = 2 then

if $R_{\overline{A}}$ is 0-valid, 1-valid, horn, dual horn, bijunctive or affine, then $\{\lor, \forall, =\}$ -MC(A) is in P, otherwise $\{\lor, \forall, =\}$ -MC(A) is co-NP-complete.

▶ If $||A|| \ge 3$, then the problem { $\lor, \forall, =$ }-MC(A) is co-NP-complete.

The structures of the model checking problems $\{\land, \lor, \exists\}$ -MC(*A*) and $\{\land, \exists\}$ -MC(*A*) are somewhat similar in that both are always in NP and both are unique up to *homomorphism equivalence* of the template.

⁴Not just equivalent in some complexity-theoretic sense: by identical we mean that, for all φ in { \land, \lor, \exists }-**FO**, $A \models \varphi$ iff $A' \models \varphi$.

The structures of the model checking problems $\{\land, \lor, \exists\}$ -MC(*A*) and $\{\land, \exists\}$ -MC(*A*) are somewhat similar in that both are always in NP and both are unique up to *homomorphism equivalence* of the template. By this we mean that $\{\land, \lor, \exists\}$ -MC(*A*) and $\{\land, \lor, \exists\}$ -MC(*A'*) are identical⁴ iff *A* and *A'* are homomorphically equivalent, i.e. there exist homomorphisms both from *A* to *A'* and from *A'* to *A*.

⁴Not just equivalent in some complexity-theoretic sense: by identical we mean that, for all φ in { \land, \lor, \exists }-**FO**, $A \models \varphi$ iff $A' \models \varphi$.

The structures of the model checking problems $\{\land, \lor, \exists\}$ -MC(*A*) and $\{\land, \exists\}$ -MC(*A*) are somewhat similar in that both are always in NP and both are unique up to *homomorphism equivalence* of the template. By this we mean that $\{\land, \lor, \exists\}$ -MC(*A*) and $\{\land, \lor, \exists\}$ -MC(*A'*) are identical⁴ iff *A* and *A'* are homomorphically equivalent, i.e. there exist homomorphisms both from *A* to *A'* and from *A'* to *A*. Through this observation and Hell and Nešetřil's CSP dichotomy for undirected graphs, we are able to derive that the class of problems $\{\land, \lor, \exists\}$ -MC(*A*) exhibits dichotomy. Specifically,

▶ if R_A is either empty or *x*-valid, for some $x \in A$, then $\{\land, \lor, \exists\}$ -MC(A) is in Logspace, otherwise

• it $\{\land, \lor, \exists\}$ -MC(A) is NP-complete.

⁴Not just equivalent in some complexity-theoretic sense: by identical we mean that, for all φ in { \land , \lor , \exists }-**FO**, $A \models \varphi$ iff $A' \models \varphi$.

University

Of Durham

 $\{\land,\lor,\exists,=\}$ -MC(*A*) possesses the same dichotomy as $\{\land,\lor,\exists\}$ -MC(*A*) (although the possibility that R_A is empty is removed).

 $\{\land,\lor,\exists,=\}$ -MC(*A*) possesses the same dichotomy as $\{\land,\lor,\exists\}$ -MC(*A*) (although the possibility that *R*_A is empty is removed). The logics $\{\land,\lor,\forall\}$ -FO and $\{\land,\lor,\exists\}$ -FO are dual in the sense already described. It follows that the problems $\{\land,\lor,\forall\}$ -MC(*A*) exhibit dichotomy between those that are in Logspace and those that are co-NP-complete.

 $\{\land,\lor,\exists,=\}$ -MC(*A*) possesses the same dichotomy as $\{\land,\lor,\exists\}$ -MC(*A*) (although the possibility that *R*_A is empty is removed). The logics $\{\land,\lor,\forall\}$ -FO and $\{\land,\lor,\exists\}$ -FO are dual in the sense already described. It follows that the problems $\{\land,\lor,\forall\}$ -MC(*A*) exhibit dichotomy between those that are in Logspace and those that are co-NP-complete.

Finally, the logic $\{\land,\lor,\forall,=\}$ -FO is dual to the logic $\{\land,\lor,\exists\}$ -FO augmented with disequality. It follows that the problems $\{\land,\lor,\forall,=\}$ -MC(*A*) exhibit a (slightly different) dichotomy, also between Logspace and co-NP-complete.

For certain fragments of **FO**, we have examined the complexity of the model checking problems in which the model acts as a parameter. In some cases we have obtained a simple classification – a dichotomy – in the other cases such a classification seems to be very hard.

For certain fragments of **FO**, we have examined the complexity of the model checking problems in which the model acts as a parameter. In some cases we have obtained a simple classification – a dichotomy – in the other cases such a classification seems to be very hard.

Ideally, as mathematicians, we would like to find problems that are neither too easy nor too hard.

For certain fragments of **FO**, we have examined the complexity of the model checking problems in which the model acts as a parameter. In some cases we have obtained a simple classification – a dichotomy – in the other cases such a classification seems to be very hard.

Ideally, as mathematicians, we would like to find problems that are neither too easy nor too hard.

A natural progression would be to consider those positive fragments of **FO** which contain both quantifiers. This leaves us with the following.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Class IV Class V

The model checking problem associated with $\{\land, \exists, \forall\}$ -**FO** is essentially the *quantified* CSP. It is known that this problem may attain each of the complexities P, NP-complete and Pspace-complete, but no overarching classification is even conjectured. The remainder of Class IV are likely to be just as hard to classify⁵.

⁵Possibly
$$\{\lor, \exists, \forall, =\}$$
-FO will be easier.

of Durham

Class IV Class V

The model checking problem associated with $\{\land, \exists, \forall\}$ -**FO** is essentially the *quantified* CSP. It is known that this problem may attain each of the complexities P, NP-complete and Pspace-complete, but no overarching classification is even conjectured. The remainder of Class IV are likely to be just as hard to classify⁵. Class V, with associated model checking complexities known to include each of P, NP-complete, co-NP-complete and Pspace-complete, may provide the richest area for future research.

Barnaby Martin

of Durham