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Definition
Known results & Scope of this talk

Fix a logic L. The model checking problem over L may be defined to
have

I Input: a structure (model) A and a sentence ϕ of L.
I Question: does A |= ϕ?

The complexity of this problem is sometimes known as the combined
complexity of L.

This problem can be parameterised, either by the sentence ϕ, in
which case the input is just A; or by the model A, in which case the
input is just ϕ.
The maximal complexity of the problem parameterised by ϕ is known
as the data complexity of L; the maximal complexity of the problem
parameterised by A is known as the expression complexity of L.
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Vardi has studied this problem, mostly for logics which subsume FO.

logic complexity
data expression combined

q.f.FO Logspace Logspace Logspace
FO Logspace Pspace Pspace
TC NLogspace (N)Pspace (N)Pspace
LFP P Exptime Exptime
∃SO NP NExptime NExptime

In all cases, these complexities are complete with respect to
Logspace reductions. In most1 of the cases it may be seen that the
expression and combined complexities coincide, and are one
exponential higher than the data complexity.

1Indeed, in all but the first. The first case is slightly anachronistic anyway since
being Logspace-hard under Logspace reduction is trivial.
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Definition
Known results & Scope of this talk

We will be interested only in logics L which are fragments of FO, and
only in the parameterisation of their model checking problem by the
model A. The fragments of FO which we consider derive from
restricting which of the symbols of Γ1 := {¬,∧,∨,∃,∀,=} we allow.
For example, we consider {∧,∃}-FO to be that fragment of FO
without negation, disjunction, universal quantification or equality.

For any Γ ⊆ Γ1 we define the logic Γ-FO similarly, and we define the
problem Γ-MC(A) to have

I Input: a sentence ϕ of Γ-FO.
I Question: does A |= ϕ?

The maximal complexity of this over all A is therefore the expression
complexity of Γ-FO.
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Definition
Known results & Scope of this talk

The case for {¬,∧,∨,∃,∀,=}-FO, i.e. full first-order logic, is
addressed by Vardi. It is known that {¬,∧,∨,∃,∀,=}-MC(A), that is
the problem

I Input: a sentence ϕ of FO.
I Question: does A |= ϕ?

is Pspace-complete, if ||A|| > 1; and in Logspace if ||A||=1.

Pspace-hardness may be proved by reduction from quantified
satisfiability (QSAT); Logspace membership comes via the
(propositional) boolean sentence value problem.
Similarly, it is known that {¬,∧,∨,∃,∀}-MC(A) is Pspace-complete if
A contains any non-trivial relation (i.e. a relation that is non-empty
and does not contain all tuples) and is in Logspace otherwise.
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Definition
Known results & Scope of this talk

In this talk, we will be concerned with purely relational signatures and
with those non-trivial positive fragments of FO which contain exactly
one of the quantifiers. We have 12 cases to consider.

Class I Class II Class III

{∨,∃}-FO {∧,∃}-FO {∧,∨,∃}-FO
{∨,∃,=}-FO {∧,∃,=}-FO {∧,∨,∃,=}-FO
{∧,∀}-FO {∨,∀}-FO {∧,∨,∀}-FO
{∧,∀,=}-FO {∨,∀,=}-FO {∧,∨,∀,=}-FO

The model checking problem associated with the first logic of Class II,
{∧,∃}-FO, is essentially the constaint satisfaction problem (CSP).
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Partial dichotomy results for the CSP
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The problem {∧,∃}-MC(A), that is the problem
I Input: a sentence ϕ of {∧,∃}-FO.
I Question: does A |= ϕ?

is better known as the constraint satisfaction problem CSP(A).

The question as to the precise complexity of this problem, over
various A, has attracted much attention. The problem is always in NP
and is often NP-complete, although cases in P are known. It is
conjectured2 that the problem is always either in P or NP-complete.
This so-called CSP dichotomy conjecture remains open, but it has
been settled for certain classes of model.

2This conjecture was originally due to Feder and Vardi, although they gave no
separating criterion. Bulatov, subsequently, conjectured a separating criterion.

Barnaby Martin Dichotomies and Duality in First-order Model Checking Problems



The Model Checking Problem
Logics of Classes I and II

Logics of Class III
Conclusion and Further Work

{∧, ∃}-FO and the CSP
Partial dichotomy results for the CSP
{∨, ∃}-FO, {∨, ∃, =}-FO, {∧, ∀}-FO and {∧, ∀, =}-FO
{∧, ∃, =}-FO
{∨, ∀}-FO
{∨, ∀, =}-FO

The problem {∧,∃}-MC(A), that is the problem
I Input: a sentence ϕ of {∧,∃}-FO.
I Question: does A |= ϕ?

is better known as the constraint satisfaction problem CSP(A).
The question as to the precise complexity of this problem, over
various A, has attracted much attention. The problem is always in NP
and is often NP-complete, although cases in P are known. It is
conjectured2 that the problem is always either in P or NP-complete.
This so-called CSP dichotomy conjecture remains open, but it has
been settled for certain classes of model.

2This conjecture was originally due to Feder and Vardi, although they gave no
separating criterion. Bulatov, subsequently, conjectured a separating criterion.

Barnaby Martin Dichotomies and Duality in First-order Model Checking Problems



The Model Checking Problem
Logics of Classes I and II

Logics of Class III
Conclusion and Further Work

{∧, ∃}-FO and the CSP
Partial dichotomy results for the CSP
{∨, ∃}-FO, {∨, ∃, =}-FO, {∧, ∀}-FO and {∧, ∀, =}-FO
{∧, ∃, =}-FO
{∨, ∀}-FO
{∨, ∀, =}-FO

I (Schaefer 1978) Dichotomy when ||A|| ≤ 2 (i.e. on boolean
models); recently extended to

I (Bulatov 2002) Dichotomy when ||A|| ≤ 3.
I (Hell/Nešetřil 1990) Dichotomy when A ranges over undirected

graphs.
Specifically: if A has a self-loop or is bipartite, then {∧,∃}-MC(A)
is in P, otherwise it is NP-complete.

Whilst we can not answer the dichotomy conjecture in general, it
provides the motivation for us to consider the analagous model
checking problems for logics similar to {∨,∃}-FO.
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But we have run ahead of ourselves. Let us consider the model
checking problems associated with the logics of Class I: {∨,∃}-FO,
{∨,∃,=}-FO, {∧,∀}-FO and {∧,∀,=}-FO.

It turns out that none of these model checking problems is particularly
hard, indeed, they are all in Logspace. We will prove this for
{∨,∃}-MC(A) where A is any digraph. We may consider any input to
be prenex and of the form

ϕ := ∃v E(v1, v ′
1) ∨ . . . ∨ E(vm, v ′

m)

But to establish whether A |= ϕ, we need only cycle through ||A||2
pairs, looking for a witness to a disjunct.
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We have already discussed {∧,∃}-FO and its model checking
problem – also known as the CSP. Owing to the rule of substitution,
the logic {∧,∃}-FO is very nearly as expressive as {∧,∃,=}-FO.
From the perspective of the complexity of their model checking
problems, we consider them the same.

I For a model A, we define its complement A to have the same
universe as A, but with relations which are the (set-theoretic)
complements of the relations of A3.

This brings us on to the logic {∨,∀}-FO, which is dual to {∧,∃}-FO in
the following sense.

3That is, for each RA
i , the relation RA

i is defined by x ∈ RA
i iff x /∈ RA

i .
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Consider a prenex sentence ϕ of {∨,∀}-FO

ϕ := ∀v Rα1(v1) ∨ . . . ∨ Rαm(vm)

Now, A |=/ ϕ iff

A |=/ ∀v Rα1(v1) ∨ . . . ∨ Rαm(vm) iff
A |=/ ¬ ∃v ¬[Rα1(v1) ∨ . . . ∨ Rαm(vm)] iff
A |=/ ¬ ∃v ¬Rα1(v1) ∧ . . . ∧ ¬Rαm(vm) iff
A |= ∃v ¬Rα1(v1) ∧ . . . ∧ ¬Rαm(vm) iff
A |= ∃v Rα1(v1) ∧ . . . ∧ Rαm(vm) iff

A |= ϕ′, where

ϕ′ := ∃v Rα1(v1) ∧ . . . ∧ Rαm(vm).

It follows that {∨,∀}-MC(A) and the complement of {∧,∃}-MC(A) are
equivalent under, e.g., Logspace reductions.
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This reduction demonstrates that {∨,∀}-MC(A) is always in co-NP,
and that, if we choose some A such that {∧,∃}-MC(A) is
NP-complete, then {∨,∀}-MC(A) is co-NP-complete.
This tells us that the classification problem for {∨,∀}-MC(A) is as
hard as that for {∧,∃}-MC(A), and that a dichotomy holds for the
former (between P and co-NP-complete) iff it holds for the latter
(between P and NP-complete).
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We can do better with the final logic of Class I, {∨,∀,=}-FO. This is
not dual to the logic {∧,∃,=}-FO, rather it is dual to the logic
{∧,∃}-FO when augmented with a disequality relation. Since a
disequality relation on a structure is tantamount to a graph clique, we
are immediately lead to the following.

I For structures A such that ||A|| ≥ 3, the problem {∨,∀,=}-MC(A)
is co-NP-complete.

In fact, thanks to Schaefer’s dichotomy on boolean models, we can
go further, obtaining a complete classification.

I For a model A, define RA to be the cartesian product of the
non-empty relations of A.

I The a-ary relation R ⊆ |A|a is said to be x-valid, for some x ∈ A,
iff (xa) = (x , . . . , x) ∈ R.
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In full generality, the class of problems {∨,∀,=}-MC(A) exhibits
dichotomy, between those cases that are in P and those that are
co-NP-complete. Specifically:

I If ||A|| = 1, then the problem {∨,∀,=}-MC(A) is in P.
I If ||A|| = 2 then

if RA is 0-valid, 1-valid, horn, dual horn, bijunctive or affine, then
{∨,∀, =}-MC(A) is in P, otherwise
{∨,∀, =}-MC(A) is co-NP-complete.

I If ||A|| ≥ 3, then the problem {∨,∀,=}-MC(A) is co-NP-complete.
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The structures of the model checking problems {∧,∨,∃}-MC(A) and
{∧,∃}-MC(A) are somewhat similar in that both are always in NP and
both are unique up to homomorphism equivalence of the template.

By this we mean that {∧,∨,∃}-MC(A) and {∧,∨,∃}-MC(A′) are
identical4 iff A and A′ are homomorphically equivalent, i.e. there exist
homomorphisms both from A to A′ and from A′ to A.
Through this observation and Hell and Nešetřil’s CSP dichotomy for
undirected graphs, we are able to derive that the class of problems
{∧,∨,∃}-MC(A) exhibits dichotomy. Specifically,

I if RA is either empty or x-valid, for some x ∈ A, then
{∧,∨,∃}-MC(A) is in Logspace, otherwise

I it {∧,∨,∃}-MC(A) is NP-complete.

4Not just equivalent in some complexity-theoretic sense: by identical we mean
that, for all ϕ in {∧,∨, ∃}-FO, A |= ϕ iff A′ |= ϕ.

Barnaby Martin Dichotomies and Duality in First-order Model Checking Problems



The Model Checking Problem
Logics of Classes I and II

Logics of Class III
Conclusion and Further Work

{∧,∨, ∃}-FO
{∧,∨, ∃, =}-FO, {∧,∨, ∀}-FO and {∧,∨, ∀, =}-FO

The structures of the model checking problems {∧,∨,∃}-MC(A) and
{∧,∃}-MC(A) are somewhat similar in that both are always in NP and
both are unique up to homomorphism equivalence of the template.
By this we mean that {∧,∨,∃}-MC(A) and {∧,∨,∃}-MC(A′) are
identical4 iff A and A′ are homomorphically equivalent, i.e. there exist
homomorphisms both from A to A′ and from A′ to A.

Through this observation and Hell and Nešetřil’s CSP dichotomy for
undirected graphs, we are able to derive that the class of problems
{∧,∨,∃}-MC(A) exhibits dichotomy. Specifically,

I if RA is either empty or x-valid, for some x ∈ A, then
{∧,∨,∃}-MC(A) is in Logspace, otherwise

I it {∧,∨,∃}-MC(A) is NP-complete.

4Not just equivalent in some complexity-theoretic sense: by identical we mean
that, for all ϕ in {∧,∨, ∃}-FO, A |= ϕ iff A′ |= ϕ.

Barnaby Martin Dichotomies and Duality in First-order Model Checking Problems



The Model Checking Problem
Logics of Classes I and II

Logics of Class III
Conclusion and Further Work

{∧,∨, ∃}-FO
{∧,∨, ∃, =}-FO, {∧,∨, ∀}-FO and {∧,∨, ∀, =}-FO

The structures of the model checking problems {∧,∨,∃}-MC(A) and
{∧,∃}-MC(A) are somewhat similar in that both are always in NP and
both are unique up to homomorphism equivalence of the template.
By this we mean that {∧,∨,∃}-MC(A) and {∧,∨,∃}-MC(A′) are
identical4 iff A and A′ are homomorphically equivalent, i.e. there exist
homomorphisms both from A to A′ and from A′ to A.
Through this observation and Hell and Nešetřil’s CSP dichotomy for
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{∧,∨,∃,=}-MC(A) possesses the same dichotomy as {∧,∨,∃}-
MC(A) (although the possibility that RA is empty is removed).

The logics {∧,∨,∀}-FO and {∧,∨,∃}-FO are dual in the sense
already described. It follows that the problems {∧,∨,∀}-MC(A)
exhibit dichotomy between those that are in Logspace and those that
are co-NP-complete.
Finally, the logic {∧,∨,∀,=}-FO is dual to the logic {∧,∨,∃}-FO
augmented with disequality. It follows that the problems
{∧,∨,∀,=}-MC(A) exhibit a (slightly different) dichotomy, also
between Logspace and co-NP-complete.
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For certain fragments of FO, we have examined the complexity of the
model checking problems in which the model acts as a parameter. In
some cases we have obtained a simple classification – a dichotomy –
in the other cases such a classification seems to be very hard.

Ideally, as mathematicians, we would like to find problems that are
neither too easy nor too hard.

A natural progression would be to consider those positive fragments
of FO which contain both quantifiers. This leaves us with the
following.
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Class IV Class V

{∧,∃,∀}-FO {∨,∃,∀}-FO {∧,∨,∃,∀}-FO
{∧,∃,∀,=}-FO {∨,∃,∀,=}-FO {∧,∨,∃,∀,=}-FO

The model checking problem associated with {∧,∃,∀}-FO is
essentially the quantified CSP. It is known that this problem may
attain each of the complexities P, NP-complete and Pspace-complete,
but no overarching classification is even conjectured. The remainder
of Class IV are likely to be just as hard to classify5.

Class V, with associated model checking complexities known to
include each of P, NP-complete, co-NP-complete and
Pspace-complete, may provide the richest area for future research.

5Possibly {∨, ∃, ∀, =}-FO will be easier.
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