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Theorem 1: Ibarra/Ravikumar 1986, Hromkovi¢/et al 2002
Let A be trim. The following assertions are equivalent:

» A is polynomially ambiguous.
» For every state g, every w € ¥, we have |q«”f> q| <

» For every states p, q, every w € ¥*,

.Q @‘ —  p=gq.
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» they arise in the Cauchy-product of unambiguous/ finitely
ambiguous series

(ST)(w) = Z S(u)T(v)

uv=w
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a,0b,0 a1 a,0 b,0
> |Al(w) = min{ﬂ ‘ ba'b is a factor of W}

» A is polynomially ambiguous, |15 3] < [w[,—1 < |w].

» | A| is not the mapping of a finitely ambiguous WFA.
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Mobhri’s Algorithm:

Let A =1[Q,0, A, 0] be a pol. amb. WFA, i.e.,

» Q={1,...,n} is a finite set,

> 6: ¥ — Z9%Q? is a homomorphism,

> )\ 0€eZ9.

> |A| X — Z, |A|(w) == A0(w) o
Let B = (by,...,b,) € Z9.
min(B) := min{b;|i € Q}
nf(B) := (—min(B)) + B = (b1 — min(B), ..., b, — min(B))
nf((1,2,3)) = (0,1,2) nf((3,00,4)) = (0,00,1)
nf((3,00,—4)) = (7,00,0)



Let Q' C ZQ9 be the least set which satisfies
» nf(\) € Q', and



Let Q' C ZQ9 be the least set which satisfies
» nf(\) € Q', and
> forevery B€ Q, ac ¥, nf(Bf(a)) € Q.



Let Q' C ZQ9 be the least set which satisfies
» nf(\) € Q', and
> forevery B€ Q, ac ¥, nf(Bf(a)) € Q.

We have Q" = {nf(Ad(w))|w € =*}.



Let Q' C ZQ be the least set which satisfies

» nf(\) € Q', and

> forevery B€ Q, ac ¥, nf(Bf(a)) € Q.
We have Q" = {nf(Ad(w))|w € =*}.
Mohri's Algorithm uses the set @’ as states.

It terminates iff Q' is finite.
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w, 3

w, 2 w, 1

For k > 1, we have \(0(w))* = (2k, k) and
nf(A(O(w))¥) = (k,0), ie.,

Mohri’s algorithm does not terminate on the sequence (W*)y>1.
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Another Example:

w, 3

w, 1 w, 2

For k > 2, we have \(6(w))* = (k, k +2) and
nf(A(B(w))¥) = (0,2), i.e.,

Mohri’s algorithm terminates on the sequence (w*)x>1.
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Let w € X* and B = 0(w).
Assume that B has an idempotent structure, i.e.,
Bli,j] # 00 < (BB)[i,j] # 00 foralli,je Q.
For i,j € Q let i <gj iff B[i,j] # oc.
The relation <g is transitive and antisymmetric,
but not necessarily reflexive of irreflexive,

i.e., <pg is almost a partial ordering.
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A subset C C Q is a clone iff
there exists some v € ©* such that C = {i € Q| A0(v)[i] # oo}.
C and B are stable iff C = {j € Q ‘ Bli,j] # oo for some i € C}.
C and B satisfy the clones property if
for every i € C which is minimal w.r.t. <g,
the value B[/, /] is minimal among B[}, /] for j € C.

Lemma:
The set {nf(A0(vw*)) | k € N} is finite iff

C and B satisfy the clones property.
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A pol. amb. WFA A satisfies the clones property if
» for every clone C,

» for every w € X* such that B := (w) has an idempotent
structure and C and B are stable,

C and B satisfy the clones property.

Theorem 2: Kirsten 2005
Let A be trim, polynomially ambiguous WFA. The following
assertions are equivalent:

1. Mohri's algorithm terminates on A.

2. For every v,w € ¥*, Mohri's algorithm
terminates on the sequence (vw),>1 on A.

3. The WFA A satisfies the clones property.
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b0 b1

a,0
a,0b,0 a1 a,0b,1

» For every v,w € ¥*, Mohri's algorithm terminates on
k
(VW )kz]_.

» Mohri’s algorithm does not terminate on baba®ba3ba’bh. ..

(2)=-(1) in Theorem 2 does not hold for A.



