A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata

Daniel Kirsten

Dresden University of Technology Institut for Algebra

August 31, 2006

Definition:

An automaton \mathcal{A} is called polynomially ambiguous if there exists some polynomial $P: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $w \in \Sigma^{*}$ there are at most $P(|w|)$ accepting paths for w.

Definition:

An automaton \mathcal{A} is called polynomially ambiguous if there exists some polynomial $P: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $w \in \Sigma^{*}$ there are at most $P(|w|)$ accepting paths for w.

Theorem 1:
 Ibarra/Ravikumar 1986, Hromkovič/et al 2002

Let \mathcal{A} be trim. The following assertions are equivalent:

- \mathcal{A} is polynomially ambiguous.
- For every state q, every $w \in \Sigma^{*}$, we have $|q \stackrel{w}{\sim} q| \leq 1$.
- For every states p, q, every $w \in \Sigma^{*}$,

Motivation:

- less explored class of automata
- probably a large class of feasable WFA
- development of proof techniques

Motivation:

- less explored class of automata
- probably a large class of feasable WFA
- development of proof techniques
- they arise in the Cauchy-product of unambiguous/ finitely ambiguous series

$$
(S T)(w):=\sum_{u v=w} S(u) T(v)
$$

An Example:

An Example:

- $|\mathcal{A}|(w)=\min \left\{\ell \mid b a^{\ell} b\right.$ is a factor of $\left.w\right\}$

An Example:

- $|\mathcal{A}|(w)=\min \left\{\ell \mid b a^{\ell} b\right.$ is a factor of $\left.w\right\}$
- \mathcal{A} is polynomially ambiguous, $\quad|1 \stackrel{w}{\sim} 3| \leq|w|_{b}-1<|w|$.

An Example:

- $|\mathcal{A}|(w)=\min \left\{\ell \mid b a^{\ell} b\right.$ is a factor of $\left.w\right\}$
- \mathcal{A} is polynomially ambiguous, $\quad|1 \stackrel{w}{\sim} 3| \leq|w|_{b}-1<|w|$.
$-|\mathcal{A}|$ is not the mapping of a finitely ambiguous WFA.

Mohri's Algorithm:

Let $\mathcal{A}=[Q, \theta, \lambda, \varrho]$ be a pol. amb. WFA, i.e.,

- $Q=\{1, \ldots, n\}$ is a finite set,
- $\theta: \Sigma^{*} \rightarrow \mathbb{Z}^{Q \times Q}$ is a homomorphism,
- $\lambda, \varrho \in \mathbb{Z}^{Q}$.
- $|\mathcal{A}|: \Sigma^{*} \rightarrow \mathbb{Z}, \quad|\mathcal{A}|(w):=\lambda \theta(w) \varrho$

Mohri's Algorithm:

Let $\mathcal{A}=[Q, \theta, \lambda, \varrho]$ be a pol. amb. WFA, i.e.,

- $Q=\{1, \ldots, n\}$ is a finite set,
- $\theta: \Sigma^{*} \rightarrow \mathbb{Z}^{Q \times Q}$ is a homomorphism,
- $\lambda, \varrho \in \mathbb{Z}^{Q}$.
- $|\mathcal{A}|: \Sigma^{*} \rightarrow \mathbb{Z}, \quad|\mathcal{A}|(w):=\lambda \theta(w) \varrho$

Let $B=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{Q}$.
$\min (B):=\min \left\{b_{i} \mid i \in Q\right\}$

Mohri's Algorithm:

Let $\mathcal{A}=[Q, \theta, \lambda, \varrho]$ be a pol. amb. WFA, i.e.,

- $Q=\{1, \ldots, n\}$ is a finite set,
- $\theta: \Sigma^{*} \rightarrow \mathbb{Z}^{Q \times Q}$ is a homomorphism,
- $\lambda, \varrho \in \mathbb{Z}^{Q}$.
- $|\mathcal{A}|: \Sigma^{*} \rightarrow \mathbb{Z}, \quad|\mathcal{A}|(w):=\lambda \theta(w) \varrho$

Let $B=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{Q}$.
$\min (B):=\min \left\{b_{i} \mid i \in Q\right\}$
$\operatorname{nf}(B):=(-\min (B))+B=\left(b_{1}-\min (B), \ldots, b_{n}-\min (B)\right)$

Mohri's Algorithm:

Let $\mathcal{A}=[Q, \theta, \lambda, \varrho]$ be a pol. amb. WFA, i.e.,

- $Q=\{1, \ldots, n\}$ is a finite set,
- $\theta: \Sigma^{*} \rightarrow \mathbb{Z}^{Q \times Q}$ is a homomorphism,
- $\lambda, \varrho \in \mathbb{Z}^{Q}$.
- $|\mathcal{A}|: \Sigma^{*} \rightarrow \mathbb{Z}, \quad|\mathcal{A}|(w):=\lambda \theta(w) \varrho$

Let $B=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{Q}$.
$\min (B):=\min \left\{b_{i} \mid i \in Q\right\}$
$\operatorname{nf}(B):=(-\min (B))+B=\left(b_{1}-\min (B), \ldots, b_{n}-\min (B)\right)$
$n f((1,2,3))=(0,1,2) \quad \operatorname{nf}((3, \infty, 4))=(0, \infty, 1)$
$n f((3, \infty,-4))=(7, \infty, 0)$

Let $Q^{\prime} \subseteq \mathbb{Z}^{Q}$ be the least set which satisfies

- $\operatorname{nf}(\lambda) \in Q^{\prime}$, and

Let $Q^{\prime} \subseteq \mathbb{Z}^{Q}$ be the least set which satisfies

- $\operatorname{nf}(\lambda) \in Q^{\prime}$, and
- for every $B \in Q^{\prime}, a \in \Sigma, \quad n f(B \theta(a)) \in Q^{\prime}$.

Let $Q^{\prime} \subseteq \mathbb{Z}^{Q}$ be the least set which satisfies

- $\operatorname{nf}(\lambda) \in Q^{\prime}$, and
- for every $B \in Q^{\prime}, a \in \Sigma, \quad n f(B \theta(a)) \in Q^{\prime}$.

We have $Q^{\prime}=\left\{n f(\lambda \theta(w)) \mid w \in \Sigma^{*}\right\}$.

Let $Q^{\prime} \subseteq \mathbb{Z}^{Q}$ be the least set which satisfies

- $\operatorname{nf}(\lambda) \in Q^{\prime}$, and
- for every $B \in Q^{\prime}, a \in \Sigma, \quad n f(B \theta(a)) \in Q^{\prime}$.

We have $Q^{\prime}=\left\{\operatorname{nf}(\lambda \theta(w)) \mid w \in \Sigma^{*}\right\}$.
Mohri's Algorithm uses the set Q^{\prime} as states.
It terminates iff Q^{\prime} is finite.

An Example:

An Example:

For $k \geq 1$, we have $\lambda(\theta(w))^{k}=(2 k, k)$ and

An Example:

For $k \geq 1$, we have $\lambda(\theta(w))^{k}=(2 k, k)$ and $n f\left(\lambda(\theta(w))^{k}\right)=(k, 0)$, i.e.,

Mohri's algorithm does not terminate on the sequence $\left(w^{k}\right)_{k \geq 1}$.

Another Example:

Another Example:

For $k \geq 2$, we have $\lambda(\theta(w))^{k}=(k, k+2)$ and

Another Example:

For $k \geq 2$, we have $\lambda(\theta(w))^{k}=(k, k+2)$ and $n f\left(\lambda(\theta(w))^{k}\right)=(0,2)$, i.e.,

Mohri's algorithm terminates on the sequence $\left(w^{k}\right)_{k \geq 1}$.

Let $w \in \Sigma^{*}$ and $B=\theta(w)$.
Assume that B has an idempotent structure, i.e.,

$$
B[i, j] \neq \infty \Longleftrightarrow(B B)[i, j] \neq \infty \quad \text { for all } i, j \in Q
$$

Let $w \in \Sigma^{*}$ and $B=\theta(w)$.
Assume that B has an idempotent structure, i.e.,

$$
B[i, j] \neq \infty \Longleftrightarrow(B B)[i, j] \neq \infty \quad \text { for all } i, j \in Q
$$

For $i, j \in Q$ let $i \leq_{B} j$ iff $B[i, j] \neq \infty$.

Let $w \in \Sigma^{*}$ and $B=\theta(w)$.
Assume that B has an idempotent structure, i.e.,

$$
B[i, j] \neq \infty \Longleftrightarrow(B B)[i, j] \neq \infty \quad \text { for all } i, j \in Q .
$$

For $i, j \in Q$ let $i \leq_{B} j$ iff $B[i, j] \neq \infty$.
The relation \leq_{B} is transitive and antisymmetric,

Let $w \in \Sigma^{*}$ and $B=\theta(w)$.
Assume that B has an idempotent structure, i.e.,

$$
B[i, j] \neq \infty \Longleftrightarrow(B B)[i, j] \neq \infty \quad \text { for all } i, j \in Q .
$$

For $i, j \in Q$ let $i \leq_{B} j$ iff $B[i, j] \neq \infty$.
The relation \leq_{B} is transitive and antisymmetric, but not necessarily reflexive of irreflexive, i.e., \leq_{B} is almost a partial ordering.

A subset $C \subseteq Q$ is a clone iff there exists some $v \in \Sigma^{*}$ such that $C=\{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}$.

A subset $C \subseteq Q$ is a clone iff there exists some $v \in \Sigma^{*}$ such that $C=\{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}$. C and B are stable iff $C=\{j \in Q \mid B[i, j] \neq \infty$ for some $i \in C\}$.

A subset $C \subseteq Q$ is a clone iff there exists some $v \in \Sigma^{*}$ such that $C=\{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}$. C and B are stable iff $C=\{j \in Q \mid B[i, j] \neq \infty$ for some $i \in C\}$.
C and B satisfy the clones property if
for every $i \in C$ which is minimal w.r.t. \leq_{B}, the value $B[i, i]$ is minimal among $B[j, j]$ for $j \in C$.

A subset $C \subseteq Q$ is a clone iff there exists some $v \in \Sigma^{*}$ such that $C=\{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}$. C and B are stable iff $C=\{j \in Q \mid B[i, j] \neq \infty$ for some $i \in C\}$.
C and B satisfy the clones property if
for every $i \in C$ which is minimal w.r.t. \leq_{B}, the value $B[i, i]$ is minimal among $B[j, j]$ for $j \in C$.

Lemma:
The set $\left\{\operatorname{nf}\left(\lambda \theta\left(v w^{k}\right)\right) \mid k \in \mathbb{N}\right\}$ is finite iff
C and B satisfy the clones property.

A pol. amb. WFA \mathcal{A} satisfies the clones property if

- for every clone C,

A pol. amb. WFA \mathcal{A} satisfies the clones property if

- for every clone C,
- for every $w \in \Sigma^{*}$ such that $B:=\theta(w)$ has an idempotent structure and C and B are stable,

A pol. amb. WFA \mathcal{A} satisfies the clones property if

- for every clone C,
- for every $w \in \Sigma^{*}$ such that $B:=\theta(w)$ has an idempotent structure and C and B are stable,
C and B satisfy the clones property.

A pol. amb. WFA \mathcal{A} satisfies the clones property if

- for every clone C,
- for every $w \in \Sigma^{*}$ such that $B:=\theta(w)$ has an idempotent structure and C and B are stable,
C and B satisfy the clones property.

Theorem 2:

Let \mathcal{A} be trim, polynomially ambiguous WFA. The following assertions are equivalent:

1. Mohri's algorithm terminates on \mathcal{A}.

A pol. amb. WFA \mathcal{A} satisfies the clones property if

- for every clone C,
- for every $w \in \Sigma^{*}$ such that $B:=\theta(w)$ has an idempotent structure and C and B are stable,
C and B satisfy the clones property.

Theorem 2:

Kirsten 2005
Let \mathcal{A} be trim, polynomially ambiguous WFA. The following assertions are equivalent:

1. Mohri's algorithm terminates on \mathcal{A}.
2. For every $v, w \in \Sigma^{*}$, Mohri's algorithm terminates on the sequence $\left(v w^{k}\right)_{k \geq 1}$ on \mathcal{A}.
3. The WFA \mathcal{A} satisfies the clones property.

A bad Example:

A bad Example:

A bad Example:

- For every $v, w \in \Sigma^{*}$, Mohri's algorithm terminates on $\left(v w^{k}\right)_{k \geq 1}$.

A bad Example:

- For every $v, w \in \Sigma^{*}$, Mohri's algorithm terminates on $\left(v w^{k}\right)_{k \geq 1}$.
- Mohri's algorithm does not terminate on $b a b a^{2} b a^{3} b a^{4} b \ldots$
$(2) \Rightarrow(1)$ in Theorem 2 does not hold for \mathcal{A}.

