A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata

Daniel Kirsten

Dresden University of Technology Institut for Algebra

August 31, 2006

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition:

An automaton \mathcal{A} is called *polynomially ambiguous* if there exists some polynomial $\mathcal{P} : \mathbb{N} \to \mathbb{N}$ such that for every $w \in \Sigma^*$ there are at most $\mathcal{P}(|w|)$ accepting paths for w.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Definition:

An automaton \mathcal{A} is called *polynomially ambiguous* if there exists some polynomial $\mathcal{P} : \mathbb{N} \to \mathbb{N}$ such that for every $w \in \Sigma^*$ there are at most $\mathcal{P}(|w|)$ accepting paths for w.

Theorem 1:Ibarra/Ravikumar 1986, Hromkovič/et al 2002Let \mathcal{A} be trim. The following assertions are equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- \mathcal{A} is polynomially ambiguous.
- ► For every state q, every $w \in \Sigma^*$, we have $|q \stackrel{w}{\rightsquigarrow} q| \leq 1$.
- ► For every states p, q, every $w \in \Sigma^*$,

Motivation:

- less explored class of automata
- probably a large class of feasable WFA

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

development of proof techniques

Motivation:

- less explored class of automata
- probably a large class of feasable WFA
- development of proof techniques
- they arise in the Cauchy-product of unambiguous/ finitely ambiguous series

$$(ST)(w) := \sum_{uv=w} S(u)T(v)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\blacktriangleright |\mathcal{A}|(w) = \min\left\{ \left. \ell \right| ba^{\ell}b \text{ is a factor of } w \right\}$$

$$|\mathcal{A}|(w) = \min\left\{ \left. \frac{\ell}{2} \right| ba^{\ell} b \text{ is a factor of } w \right\}$$

• \mathcal{A} is polynomially ambiguous, $|1 \stackrel{w}{\rightsquigarrow} 3| \leq |w|_b - 1 < |w|.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• $|\mathcal{A}|$ is not the mapping of a finitely ambiguous WFA.

- Let $\mathcal{A} = [\mathcal{Q}, \theta, \lambda, \varrho]$ be a pol. amb. WFA, i.e.,
 - $Q = \{1, \ldots, n\}$ is a finite set,
 - $\theta: \Sigma^* \to \mathbb{Z}^{Q \times Q}$ is a homomorphism,
 - λ, ρ ∈ Z^Q.
 |A|: Σ* → Z, |A|(w) := λθ(w) ρ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Let
$$\mathcal{A} = [Q, \theta, \lambda, \varrho]$$
 be a pol. amb. WFA, i.e.,
 $\mathcal{A} = \{1, \dots, n\}$ is a finite set,
 $\mathcal{A} : \Sigma^* \to \mathbb{Z}^{Q \times Q}$ is a homomorphism,
 $\mathcal{A}, \varrho \in \mathbb{Z}^Q$.
 $\mathcal{A} : \Sigma^* \to \mathbb{Z}, \qquad |\mathcal{A}|(w) := \lambda \, \theta(w) \, \varrho$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Let $B = (b_1, \dots, b_n) \in \mathbb{Z}^Q$. min $(B) := \min\{b_i \mid i \in Q\}$

Let
$$\mathcal{A} = [Q, \theta, \lambda, \varrho]$$
 be a pol. amb. WFA, i.e.,
 $\mathbf{P} = \{1, \dots, n\}$ is a finite set,
 $\mathbf{P} : \mathbf{\Sigma}^* \to \mathbb{Z}^{Q \times Q}$ is a homomorphism,
 $\mathbf{P} : \lambda, \varrho \in \mathbb{Z}^Q$.
 $\mathbf{P} |\mathcal{A}| : \mathbf{\Sigma}^* \to \mathbb{Z}, \qquad |\mathcal{A}|(w) := \lambda \, \theta(w) \, \varrho$

Let $B = (b_1, ..., b_n) \in \mathbb{Z}^Q$. $\min(B) := \min\{b_i | i \in Q\}$ $nf(B) := (-\min(B)) + B = (b_1 - \min(B), ..., b_n - \min(B))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Let
$$\mathcal{A} = [Q, \theta, \lambda, \varrho]$$
 be a pol. amb. WFA, i.e.,
 $\mathbf{Q} = \{1, \dots, n\}$ is a finite set,
 $\mathbf{P} : \mathbf{\Sigma}^* \to \mathbb{Z}^{Q \times Q}$ is a homomorphism,
 $\mathbf{P} : \lambda, \varrho \in \mathbb{Z}^Q$.
 $\mathbf{P} |\mathcal{A}| : \mathbf{\Sigma}^* \to \mathbb{Z}, \qquad |\mathcal{A}|(w) := \lambda \theta(w) \varrho$
Let $B = (b_1, \dots, b_n) \in \mathbb{Z}^Q$.
 $\min(B) := \min\{b_i \mid i \in Q\}$
 $\operatorname{nf}(B) := (-\min(B)) + B = (b_1 - \min(B), \dots, b_n - \min(B))$

$$\begin{split} \mathsf{nf}((1,2,3)) &= (0,1,2) \qquad \mathsf{nf}((3,\infty,4)) = (0,\infty,1) \\ \mathsf{nf}((3,\infty,-4)) &= (7,\infty,0) \end{split}$$

Let $Q' \subseteq \mathbb{Z}^Q$ be the least set which satisfies \blacktriangleright nf(λ) \in Q', and

Let $Q' \subseteq \mathbb{Z}^Q$ be the least set which satisfies

- ▶ $nf(\lambda) \in Q'$, and
- ► for every $B \in Q'$, $a \in \Sigma$, $nf(B\theta(a)) \in Q'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Let $Q' \subseteq \mathbb{Z}^Q$ be the least set which satisfies

- ▶ $nf(\lambda) \in Q'$, and
- ► for every $B \in Q'$, $a \in \Sigma$, $nf(B\theta(a)) \in Q'$.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

We have $Q' = \{ \mathsf{nf}(\lambda\theta(w)) \mid w \in \Sigma^* \}.$

Let $Q' \subseteq \mathbb{Z}^Q$ be the least set which satisfies

- ▶ $nf(\lambda) \in Q'$, and
- ► for every $B \in Q'$, $a \in \Sigma$, $nf(B\theta(a)) \in Q'$.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

We have $Q' = \{ \mathsf{nf}(\lambda\theta(w)) \mid w \in \Sigma^* \}.$

Mohri's Algorithm uses the set Q' as states.

It terminates iff Q' is finite.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

For $k \geq 1$, we have $\lambda(\theta(w))^k = (2k, k)$ and

For
$$k \ge 1$$
, we have $\lambda(\theta(w))^k = (2k, k)$ and $nf(\lambda(\theta(w))^k) = (k, 0)$, i.e.,

Mohri's algorithm does not terminate on the sequence $(w^k)_{k>1}$.

Another Example:

Another Example:

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

For $k \geq 2$, we have $\lambda(\theta(w))^k = (k, k+2)$ and

Another Example:

For
$$k \geq 2$$
, we have $\lambda(\theta(w))^k = (k, k+2)$ and $\operatorname{nf}(\lambda(\theta(w))^k) = (0, 2)$, i.e.,

Mohri's algorithm terminates on the sequence $(w^k)_{k\geq 1}$.

Assume that B has an idempotent structure, i.e.,

$$B[i,j]
eq\infty \iff ig(BBig)[i,j]
eq\infty$$
 for all $i,j\in Q.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Assume that B has an idempotent structure, i.e.,

$$B[i,j] \neq \infty \iff (BB)[i,j] \neq \infty \quad \text{for all } i,j \in Q.$$

For $i,j \in Q$ let $i \leq_B j$ iff $B[i,j] \neq \infty$.

・ロト < @ ト < 差 ト < 差 ト < 多 へ ()

Assume that B has an idempotent structure, i.e.,

$$B[i,j] \neq \infty \iff (BB)[i,j] \neq \infty$$
 for all $i,j \in Q$.
For $i,j \in Q$ let $i \leq_B j$ iff $B[i,j] \neq \infty$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

The relation \leq_B is transitive and antisymmetric,

Assume that B has an idempotent structure, i.e.,

$$B[i,j] \neq \infty \iff (BB)[i,j] \neq \infty \quad \text{for all } i,j \in Q.$$

For $i,j \in Q$ let $i \leq_B j$ iff $B[i,j] \neq \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

The relation \leq_B is transitive and antisymmetric,

but not necessarily reflexive of irreflexive,

i.e., \leq_B is almost a partial ordering.

A subset $C \subseteq Q$ is a *clone* iff there exists some $v \in \Sigma^*$ such that $C = \{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

A subset $C \subseteq Q$ is a *clone* iff there exists some $v \in \Sigma^*$ such that $C = \{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}$. C and B are *stable* iff $C = \{j \in Q \mid B[i,j] \neq \infty \text{ for some } i \in C\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

A subset $C \subseteq Q$ is a *clone* iff there exists some $v \in \Sigma^*$ such that $C = \{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}$. C and B are *stable* iff $C = \{j \in Q \mid B[i,j] \neq \infty$ for some $i \in C\}$. C and B satisfy the *clones property* if for every $i \in C$ which is minimal w.r.t. \leq_B ,

the value B[i, i] is minimal among B[j, j] for $j \in C$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

A subset $C \subseteq Q$ is a *clone* iff

there exists some $v \in \Sigma^*$ such that $C = \{i \in Q \mid \lambda \theta(v)[i] \neq \infty\}.$

C and *B* are *stable* iff $C = \{j \in Q \mid B[i,j] \neq \infty \text{ for some } i \in C\}$.

C and *B* satisfy the *clones property* if for every $i \in C$ which is minimal w.r.t. \leq_B , the value B[i, i] is minimal among B[j, j] for $j \in C$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Lemma:

The set $\{ nf(\lambda \theta(vw^k)) \mid k \in \mathbb{N} \}$ is finite iff

C and B satisfy the clones property.

A pol. amb. WFA A satisfies the *clones property* if
▶ for every clone C,

- ▶ for every clone *C*,
- For every w ∈ Σ* such that B := θ(w) has an idempotent structure and C and B are stable,

- ▶ for every clone *C*,
- For every w ∈ Σ* such that B := θ(w) has an idempotent structure and C and B are stable,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

C and B satisfy the clones property.

- ▶ for every clone *C*,
- For every w ∈ Σ* such that B := θ(w) has an idempotent structure and C and B are stable,
- C and B satisfy the clones property.

Theorem 2:Kirsten 2005Let \mathcal{A} be trim, polynomially ambiguous WFA. The following
assertions are equivalent:

1. Mohri's algorithm terminates on \mathcal{A} .

- ▶ for every clone *C*,
- For every w ∈ Σ* such that B := θ(w) has an idempotent structure and C and B are stable,
- C and B satisfy the clones property.

Theorem 2: Kirsten 2005 Let \mathcal{A} be trim, polynomially ambiguous WFA. The following assertions are equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- 1. Mohri's algorithm terminates on \mathcal{A} .
- For every v, w ∈ Σ*, Mohri's algorithm terminates on the sequence (vw^k)_{k>1} on A.
- 3. The WFA \mathcal{A} satisfies the clones property.

For every v, w ∈ Σ*, Mohri's algorithm terminates on (vw^k)_{k≥1}.

For every $v, w \in \Sigma^*$, Mohri's algorithm terminates on $(vw^k)_{k \ge 1}$.

▶ Mohri's algorithm does not terminate on *baba*²*ba*³*ba*⁴*b*...

 $(2) \Rightarrow (1)$ in Theorem 2 does not hold for \mathcal{A} .