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Theorem 1: Ibarra/Ravikumar 1986, Hromkovič/et al 2002
Let A be trim. The following assertions are equivalent:

◮ A is polynomially ambiguous.

◮ For every state q, every w ∈ Σ∗, we have
∣

∣q
w
; q

∣

∣ ≤ 1.

◮ For every states p, q, every w ∈ Σ∗,

p q =⇒ p = q.w w
w

w
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Motivation:

◮ less explored class of automata

◮ probably a large class of feasable WFA

◮ development of proof techniques

◮ they arise in the Cauchy-product of unambiguous/ finitely
ambiguous series

(ST )(w) :=
∑

uv=w

S(u)T (v)
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An Example:

1 2 3

a, 0 b, 0 a, 1 a, 0 b, 0

b, 0 b, 0

◮ |A|(w) = min
{

ℓ

∣

∣

∣
baℓb is a factor of w

}

◮ A is polynomially ambiguous,
∣

∣1
w
; 3

∣

∣ ≤ |w |b − 1 < |w |.

◮ |A| is not the mapping of a finitely ambiguous WFA.
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Mohri’s Algorithm:

Let A = [Q, θ, λ, ̺] be a pol. amb. WFA, i.e.,

◮ Q = {1, . . . , n} is a finite set,

◮ θ : Σ∗ → Z
Q×Q is a homomorphism,

◮ λ, ̺ ∈ Z
Q .

◮ |A| : Σ∗ → Z, |A|(w) := λ θ(w) ̺

Let B = (b1, . . . , bn) ∈ Z
Q .

min(B) := min{bi | i ∈ Q}

nf(B) := (−min(B)) + B =
(

b1 − min(B), . . . , bn − min(B)
)

nf((1, 2, 3)) = (0, 1, 2) nf((3,∞, 4)) = (0,∞, 1)

nf((3,∞,−4)) = (7,∞, 0)
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Let Q ′ ⊆ Z
Q be the least set which satisfies

◮ nf(λ) ∈ Q ′, and

◮ for every B ∈ Q ′, a ∈ Σ, nf
(

Bθ(a)
)

∈ Q ′.

We have Q ′ =
{

nf(λθ(w))
∣

∣ w ∈ Σ∗
}

.

Mohri’s Algorithm uses the set Q ′ as states.

It terminates iff Q ′ is finite.
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An Example:

1 2

w , 2 w , 1

w , 3

For k ≥ 1, we have λ(θ(w))k = (2k, k) and

nf
(

λ(θ(w))k
)

= (k, 0), i.e.,

Mohri’s algorithm does not terminate on the sequence (wk)k≥1.
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Another Example:

1 2

w , 1 w , 2

w , 3

For k ≥ 2, we have λ(θ(w))k = (k, k + 2) and

nf
(

λ(θ(w))k
)

= (0, 2), i.e.,

Mohri’s algorithm terminates on the sequence (wk)k≥1.
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Let w ∈ Σ∗ and B = θ(w).

Assume that B has an idempotent structure, i.e.,

B [i , j] 6= ∞ ⇐⇒
(

BB
)

[i , j] 6= ∞ for all i , j ∈ Q.

For i , j ∈ Q let i ≤B j iff B[i , j] 6= ∞.

The relation ≤B is transitive and antisymmetric,

but not necessarily reflexive of irreflexive,

i.e., ≤B is almost a partial ordering.
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A subset C ⊆ Q is a clone iff

there exists some v ∈ Σ∗ such that C =
{

i ∈ Q
∣

∣λθ(v)[i ] 6= ∞
}

.

C and B are stable iff C =
{

j ∈ Q
∣

∣B [i , j] 6= ∞ for some i ∈ C
}

.

C and B satisfy the clones property if

for every i ∈ C which is minimal w.r.t. ≤B ,

the value B [i , i ] is minimal among B [ j , j] for j ∈ C .

Lemma:

The set
{

nf(λθ(vwk))
∣

∣ k ∈ N
}

is finite iff

C and B satisfy the clones property.
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A pol. amb. WFA A satisfies the clones property if

◮ for every clone C ,

◮ for every w ∈ Σ∗ such that B := θ(w) has an idempotent
structure and C and B are stable,

C and B satisfy the clones property.

Theorem 2: Kirsten 2005
Let A be trim, polynomially ambiguous WFA. The following
assertions are equivalent:

1. Mohri’s algorithm terminates on A.

2. For every v ,w ∈ Σ∗, Mohri’s algorithm
terminates on the sequence (vwk)k≥1 on A.

3. The WFA A satisfies the clones property.
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A bad Example:

1 2 3

a, 0 b, 0 a, 1 a, 0 b, 1

b, 0
b, 1

a, 0

◮ For every v ,w ∈ Σ∗, Mohri’s algorithm terminates on
(vwk)k≥1.

◮ Mohri’s algorithm does not terminate on baba2ba3ba4b . . .

(2)⇒(1) in Theorem 2 does not hold for A.


