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Outline of Topics

Word relations

Relational codes

Minimal and maximal relations
Relationally free monoids and stability
Hulls

Defect effect
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Notations

an alphabet

empty word

a set of words over A*

a relation on X

(z,y) € R

{(z,2) |z € X}

{(z,y) | z,y € X}

reflexive and symmetric closure of R
RN (Y xY)

{fue A* |dz € X : v Ru}

Turku CENTRE for COMPUTER SCIENCE 4



N

S
o=
NN
N

/S Word relations

o compatibility relation = reflexive and symmetric

.

W

2y
Turku CENTRE for COMPUTER SCIENCE



/. Word relations

o compatibility relation = reflexive and symmetric
e word relation R = compatibility relation and

a---amRby---b,< m=nanda; Rb;forallt=1,2,...,m

where a1, ..., am,b1,...,b, € A
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/. Word relations

o compatibility relation = reflexive and symmetric
e word relation R = compatibility relation and

a---amRby---b,< m=nanda; Rb;forallt=1,2,...,m

where ay,...,a;,,b1,...,b, € A
e If u Rv, then words v and v are R-compatible
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/. Word relations

o compatibility relation = reflexive and symmetric
e word relation R = compatibility relation and

a---amRby---b,< m=nanda; Rb;forallt=1,2,...,m

where ay,...,a;,,b1,...,b, € A
e If u Rv, then words v and v are R-compatible

multiplicativity: « Rv,u Rv' = uu’ Rov/,
simplifiability:  uwu' Rov' |u| = |v| = v Rv, ' RV
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/. Word relations

Example 1. A= {a,b,c}
R = <{(CL, b>}> — {(CL, CL), (bv b)v (Ca C)a (CL, b)? (ba CL)}
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/. Word relations

Example 1. A= {a,b,c}
R = <{(CL, b>}> — {(CL, CL), (bv b)v (Ca C)a (CL, b)? (ba CL)}
abba R baab
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/. Word relations

Example 1. A= {a,b,c}
R = <{(CL, b>}> — {(CL, CL), (bv b)v (Ca C)a (CL, b)? (ba CL)}

abba R baab
abc R cbe

e
AN

}ZA‘
2 (3
Turku CENTRE for COMPUTER SCIENCE 6



/. Word relations

Example 1. A= {a,b,c}
R = <{(CL, b>}> — {(CL, CL), (bv b)v (Ca C)a (CL, b>7 (ba CL)}

abba R baab
abc R cbe

Example 2.
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Example 1.

Example 2.
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A =a,b,c}

Word relations

R = <{(CL, b)}> — {(CL, CL), (bv b)v (Ca C)a (CL, b>7 (ba CL)}

abba R baab
abc K cbe

Partial words
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Example 1.

Example 2.
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A =a,b,c}

Word relations

R = <{(CL, b)}> — {(CL, CL), (bv b)v (Ca C)a (CL, b>7 (ba CL)}

abba R baab
abc K cbe

Partial words

EnQwldge

OnowHOdgd
knowl e dge
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Example 1.

Example 2.

.
g

W
|

U
S
AT

Q\
7

A =a,b,c}

Word relations

R = <{(CL, b)}> — {(CL, CL), (bv b)a (Ca C)a (CL, b)7 (ba CL)}

abba R baab
abc K cbe

Partial words

EnQwldge

OnowHOdgd
knowl e dge

Ry = ({(¢,a) | a € A})
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/. Relational codes

e Let R and S be word relations
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/S Relational codes

e Let R and S be word relations

e X C A*isan (R, S)-codeif for all n,m > 1 and
1, Tm,Yl,---,Un € X, We have

1 rxmBRy1---y, =>n=mandz; Sy;fort =1,2,....m
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/. Relational codes

e Let R and S be word relations

e X C A*isan (R, S)-codeif for all n,m > 1 and
1, Tm,Yl,---,Un € X, We have

1 rxmBRy1---y, =>n=mandz; Sy;fort =1,2,....m

e (R,S)-code relational code
(R,1)-code strong R-code
(R, R)-code weak R-code
(+,.)-code code
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Relational codes

A= {afa b7 C}
X ={ab, c}
S =1
R=1
R = <{(CL,C)}>
R = <{(CL, C)7 (b7 C)}>
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Example.
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Relational codes

A={a,b,c}

X ={ab, c}

S =1
R=—. (prefix) code
R = <{(a7 C)}>
R = <{(CL, C)7 (bv C)}>
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7‘1 _ Relational codes

Example. A= {a,b,c}

X = {ab, c}

S =1
R=1 (prefix) code
R = {(a,c)}) (R,t)-code
R = <{(CL, C)7 (bv C)}>
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r Relational codes
Example. A= {a,b,c}
X = {ab, c}
S=1
R=1 (prefix) code
R = {(a,c)}) (R,t)-code
R = {({(a,c),(b,c)}) | abRc.c
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Relational codes

L1

crrm Ry yp =n=mandx; Sy;forc =1,2,....m
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Relational codes

1 rxmRy1---yp, =>n=mandx; Sy;fori =1,2,....m

Q Q
Rl -t - Sl
L L

Turku CENTRE for COMPUTER SCIENCE 0



TS

e
==
N>

Relational codes

1 rxmRy1---yp, =>n=mandx; Sy;fori =1,2,....m

Q Q .
t  Theorem 3. Every (R,S)-code X is a
code.
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/S Relational codes

1 rxmRy1---yp, =>n=mandx; Sy;fori =1,2,....m

| t  Theorem 3. Every (R,S)-code X is a
code.
Ry -5, Theorem 4. Let X be a subset of A*. X
\ is an (R, S)-code & X is an (R, ?)-code
Ry = > 5 and Ry C Sy.
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algorithm
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7" - Modified Sardinas-Patterson
algorithm
o finite X C A*
o Uy = R(X)1X\ {e}
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/. Modified Sardinas-Patterson
algorithm
o finite X C AT
o Ui = R(X)™'X\ {e}
o Upp1 = R(X)"'U, U R(U,) X forn>1
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Modified Sardinas-Patterson

finite X C AT

U = R(X)7IX\ {e}

Upi1 = R(X)"U, U R(U,) 'X forn > 1
Let: > 2 satisty U, = U;_; for some ¢t > 0
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7" o Modified Sardinas-Patterson
TUCS algorithm

o finite X C AT

o U= R(X)T'X\ {¢}

o Upy1 = R(X)"U, U R(U,)'X forn>1

o Leti > 2satisty U, =U,_; forsome t > 0

e X is a weak R-code if and only if

1—1
XAQLY
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Example.

Modified Sardinas-Patterson
algorithm

A ={a,b,c}
X = {abb, ca, c}

R = <{(CL, b)v (bv C)}>
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Example.

Modified Sardinas-Patterson
algorithm

A={a,b,c}

X = {abb, ca, c}

R = <{(CL, b)v (bv C)}>

Up = R(X)7' X\ {e} = {a}
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Example.

Modified Sardinas-Patterson
algorithm

A ={a,b,c}

X = {abb, ca, c}

R = <{(CL7 b)v (bv C)}>

Up = R(X)™'X \ {e} = {a}

Us = R(X)™'U; U R(U))IX =0 U {bb}
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Example.

Modified Sardinas-Patterson
algorithm
A ={a,b,c}
X = {abb, ca, c}
R = <{(CL, b)v (bv C)}>
Uy = R(X)™' X \ {e} = {a}
Uy = R(X)"'Uy U R(U)IX =0 U {bb}
Us = R(X)_lUQ U R(UQ)_lX = {¢,b} U {g,b}
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Modified Sardinas-Patterson

A ={a,b,c}
X = {abb, ca, c}

R = <{(CL, b)v (bv C)}>
Ur = R(X)' X\ {e} = {a}

algorithm

Uy = R(X)"'Uy U R(U)IX =0 U {bb}
Us = R(X)_lUQ U R(UQ)_lX = {¢,b} U {g,b}

—> X Is not an (R, R)-code

ca.ca R c.abb
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7" - Minimal and maximal relations

S e Suin(X,R): Xisan (R,S)-code
vS'cS: X isnotan (R,S’)-code
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7‘ Minimal and maximal relations

S e Suin(X,R): Xisan (R,S)-code

vS'cS: X isnotan (R,S’)-code
S € Snax(X,R): Xisan (R,S)-code

vS'D> S X isnotan (R, S’)-code
R e Rnin(X,S): Xisan (R,S)-code

VR'C R: X isnotan (R, S)-code
R € Ry (X,S): Xisan (R,S)-code

VR'D R: X isnotan (R, S)-code
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7‘ Minimal and maximal relations

S e Suin(X,R): Xisan (R,S)-code
vS'cS: X isnotan (R,S’)-code

S € Snax(X,R): Xisan (R,S)-code
vS'D> S X isnotan (R, S’)-code

R e Rnin(X,S): Xisan (R,S)-code

VR'C R: X isnotan (R, S)-code
R € Ry (X,S): Xisan (R,S)-code

VR'D R: X isnotan (R, S)-code

o Shmax(X, R) ={Q}
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,‘f Minimal and maximal relations

S e Suin(X,R): Xisan (R,S)-code
vS'cS: X isnotan (R,S’)-code

S € Snax(X,R): Xisan (R,S)-code
vS'D> S X isnotan (R, S’)-code

R e Rnin(X,S): Xisan (R,S)-code

VR'C R: X isnotan (R, S)-code
R € Ry (X,S): Xisan (R,S)-code

VR'D R: X isnotan (R, S)-code

® Smax(X, R) = {Q}
* Ruin(X,S) = {¢}
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Minimal and maximal relations

e Smin(X, R) is a unigue element
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7" - Minimal and maximal relations

e Smin(X, R) is a unigue element
o finding Smin (X, R) easy
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7" R Minimal and maximal relations

e Smin(X, R) is a unigue element
e finding Spin(X, R) easy
e Ruax(X,S) can contain relations of different size
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7" Minimal and maximal relations

e Smin(X, R) is a unigue element

e finding Smin (X, R) easy

e Ruax(X,S) can contain relations of different size
e finding Ru.x(X,S) hard for arbitrary alphabets
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7" Minimal and maximal relations

e Smin(X, R) is a unigue element

o finding Snin(X, R) easy

e Ruax(X,S) can contain relations of different size
e finding Ru.x(X,S) hard for arbitrary alphabets

Problem: MAXIMAL RELATION
Instance: X C AT, relation S, ke N
Question: Is max. size of R € Ry (X, S) > k?
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7" Minimal and maximal relations

e Smin(X, R) is a unigue element

o finding Snin(X, R) easy

e Ruax(X,S) can contain relations of different size
e finding Ru.x(X,S) hard for arbitrary alphabets

Problem: MAXIMAL RELATION
Instance: X C AT, relation S, ke N
Question: Is max. size of R € Ry (X, S) > k?

NP-complete
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7‘/ y Relationally free monoids

A monoid M C A*is (R, S)-freeif it has a subset B C M
(called an (R, S)-base of M) such that

(i) M = B*,
(¢2) Bis an (R, S)-code.
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7" __ Relationally free monoids

A monoid M C A*is (R, S)-freeif it has a subset B C M
(called an (R, S)-base of M) such that

(i) M = B*,
(¢2) Bis an (R, S)-code.

Theorem 5. X is (R, S)-code <& X*is (R, S)-free with minimal
generating set X

Theorem 6. M is (R, S)-free & M is (R, R)-freeand Rp C Sp
for the base BB
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Stability

A monoid M C A*is (R, S)-stable if Vu,v,w,u',v",w" € A*:

c M ceM
L e
|

|7 |7 |7
| U | w | v |
| | | |
c M cM

Turku CENTRE for COMPUTER SCIENCE

=u,w e M, uSu

15



Arucs Stability

Theorem 7 (Generalized Schltzenberger’s criterium).

Mis (R, S)-free < M is (R, .S)-stable
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/. Stability

Theorem 7 (Generalized Schltzenberger’s criterium).
Mis (R, S)-free < M is (R, .S)-stable

Theorem 8 (Generalized Tilson’s result). Any nonempty
intersection of (R, S)-free monoids of A* is (R, .S)-free.
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7‘/ Hulls

o f(st)(X) ={M | X*CMCA*" Mis (R, S)-free}
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r Hulls

o f(st)(X) = {M | X*CMCA* Mis (R, S)-free}
o It Fps)(X) # 0, then there exists

Fip g (X)= ﬂ M
MEF(R7S) (X)
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r Hulls

o f(st)(X) = {M | X*CMCA* Mis (R, S)-free}
o It Fps)(X) # 0, then there exists

Fip g (X)= ﬂ M
MEF(R7S) (X)

o Fipg)(X)isthe (R,S)-free hull of X
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7‘/ - Hulls

o f(st)(X) = {M | X*CMCA* Mis (R, S)-free}
o If Fips)(X) # 0, then there exists

Fips)(X)= ﬂ M
MEf(R7S) (X)

o Fips)(X)isthe (R, S)-free hull of X

o Theorem 9. Let Fp = F(p p)(X).
F(R,S)(X) exists & R, C Sp,. Then F(R,S)(X) = F'p.
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7‘/ Hulls

Ce(X) ={(u,v) € X x X | (v,v) € R,uX* N R(vX") # 0}.

Algorithm 1 (Base of (R, R)-free hull Ay). Input: finite X C A™.
Set Xg = X, and iterate for 3 > 0.

1. Choose (u,v) € Ct(X;, R) such thatu = u'u", where
lu'| = |v| andu” € AT. If no such pair exists, then stop and
return A¢(X) = X;.

2. Set R'(u) = {prefiy|(w) | w € (Rx;)"(u)} and set
R"(u) = {sufi(w) |w € (Rx,)"(u)}, where (Rx,)" is
the transitive closure of Rx .

3. SetX;i1 = (Xj \ (RXj)+(u)) U R’(u) U R”(u).
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7‘/ L Defect effect

Theorem (Defect theorem). Let X C A™ be a finite set and let B
be the base of the free hull of X. Then |B| < | X|, and the equality
holds if and only if X is a code.
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7" - Defect effect

Theorem (Defect theorem). Let X C A™ be a finite set and let B
be the base of the free hull of X. Then |B| < | X|, and the equality
holds if and only if X is a code.

e Gr(X)=(V,E): V=X, (u,v) € E< uRv

e ¢(X, R) = the number of connected components of G r(X).
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Defect effect

Theorem (Defect theorem). Let X C A™ be a finite set and let B
be the base of the free hull of X. Then |B| < | X|, and the equality
holds if and only if X is a code.

e Gr(X)=(V,E): V=X, (u,v) € E< uRv

e ¢(X, R) = the number of connected components of G r(X).

Theorem 11 (Generalized defect theorem). Let X be a finite
subset of A* and let B be the base of the (R, R)-free hull of X.
Then ¢(B, R) < ¢(X, R), and the equality holds if and only if X is
an (R, R)-code.
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7‘/ L Defect effect

e pcodes: (Ry,t)-codes over A
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7‘/ L Defect effect

e pcodes: (I1,¢)-codes over A
e pfree: monoid is generated by a pcode
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7" - Defect effect

e pcodes: (I1,¢)-codes over A
e pfree: monoid is generated by a pcode

Corollary 1 (Defect theorem of partial words). Let X be a finite set
of partial words, i.e., a set of words over the alphabet A<>. Suppose
that pfree hull of X exists and let B be its base. Then |B| < | X
and the equality holds if and only if X is a pcode.
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