

Tomi Kärki

Compatibility relations on codes and free monoids

University of Turku and Turku Centre for Computer Science

(TUCS)

Outline of Topics

- Word relations
- Relational codes
- Minimal and maximal relations
- Relationally free monoids and stability
- Hulls
- Defect effect

- A an alphabet
- ε empty word
- X a set of words over A^*
- $R \subseteq X \times X$ a relation on X

$$x \, R \, y \quad (x, y) \in R$$

$$\iota_X \quad \{(x,x) \mid x \in X\}$$

- $\Omega_X \quad \{(x, y) \mid x, y \in X\}$
- $\langle R \rangle$ reflexive and symmetric closure of R
- $R_Y \quad R \cap (Y \times Y)$
- $R(X) \quad \{u \in A^* \mid \exists x \in X : x R u\}$

• *compatibility relation* = reflexive and symmetric

- *compatibility relation* = reflexive and symmetric
- word relation R =compatibility relation and

 $a_1 \cdots a_m \operatorname{R} b_1 \cdots b_n \Leftrightarrow m = n \text{ and } a_i \operatorname{R} b_i \text{ for all } i = 1, 2, \dots, m$

where $a_1, \ldots, a_m, b_1, \ldots, b_n \in A$

- *compatibility relation* = reflexive and symmetric
- word relation R =compatibility relation and

 $a_1 \cdots a_m R b_1 \cdots b_n \Leftrightarrow m = n \text{ and } a_i R b_i \text{ for all } i = 1, 2, \dots, m$

where $a_1, ..., a_m, b_1, ..., b_n \in A$

• If u R v, then words u and v are *R*-compatible

- *compatibility relation* = reflexive and symmetric
- word relation R =compatibility relation and

 $a_1 \cdots a_m R b_1 \cdots b_n \Leftrightarrow m = n \text{ and } a_i R b_i \text{ for all } i = 1, 2, \dots, m$

where $a_1, \ldots, a_m, b_1, \ldots, b_n \in A$

- If u R v, then words u and v are R-compatible
- $\begin{cases} \text{multiplicativity:} & u \, R \, v, \, u' \, R \, v' \Rightarrow u u' \, R \, vv', \\ \text{simplifiability:} & u u' \, R \, vv', \, |u| = |v| \Rightarrow u \, R \, v, \, u' \, R \, v' \end{cases}$

Example 1. $A = \{a, b, c\}$ $R = \langle \{(a, b)\} \rangle = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$

Example 1. $A = \{a, b, c\}$

$A = \{a, b, c\}$ $R = \langle \{(a, b)\} \rangle = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ abba R baab

Example 1. $A = \{a, b, c\}$

$A = \{a, b, c\}$ $R = \langle \{(a, b)\} \rangle = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ abba R baababc R cbc

Example 1. $A = \{a, b, c\}$

P1. $A = \{a, b, c\}$ $R = \langle \{(a, b)\} \rangle = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ *abba R baab abc R cbc*

Example 2.

Example 1. $A = \{a, b, c\}$

e 1. $A = \{a, b, c\}$ $R = \langle \{(a, b)\} \rangle = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ *abba R baab abc R cbc*

Example 2. Partial words

Example 1. $A = \{a, b, c\}$

1. $A = \{a, b, c\}$ $R = \langle \{(a, b)\} \rangle = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ *abba R baab abc R cbc*

Example 2. Partial words

 $\begin{array}{l} k n \diamondsuit w l \diamondsuit dg e \\ \diamondsuit n o w \diamondsuit \diamondsuit dg \diamondsuit \\ k n o w l e dg e \end{array}$

Example 1. $A = \{a, b, c\}$

1. $A = \{a, b, c\}$ $R = \langle \{(a, b)\} \rangle = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ *abba R baab abc R cbc*

Example 2. Partial words

 $\begin{array}{l} k n \diamondsuit w l \diamondsuit dg e \\ \diamondsuit n o w \diamondsuit \diamondsuit dg \diamondsuit \\ k n o w l e dg e \end{array}$

 $R_{\uparrow} = \langle \{ (\diamondsuit, a) \mid a \in A \} \rangle$

• Let R and S be word relations

- Let R and S be word relations
- $X \subseteq A^*$ is an (R, S)-code if for all $n, m \ge 1$ and $x_1, \ldots, x_m, y_1, \ldots, y_n \in X$, we have

- Let R and S be word relations
- $X \subseteq A^*$ is an (R, S)-code if for all $n, m \ge 1$ and $x_1, \ldots, x_m, y_1, \ldots, y_n \in X$, we have

 $x_1 \cdots x_m R y_1 \cdots y_n \Rightarrow n = m \text{ and } x_i S y_i \text{ for } i = 1, 2, \dots, m$

• (R, S)-code relational code (R, ι) -code strong R-code (R, R)-code weak R-code (ι, ι) -code code

Example.

$$A = \{a, b, c\}$$
$$X = \{ab, c\}$$
$$S = \iota$$

$$R = \iota$$
$$R = \langle \{(a, c)\} \rangle$$
$$R = \langle \{(a, c), (b, c)\} \rangle$$

Example.

$$A = \{a, b, c\}$$
$$X = \{ab, c\}$$
$$S = \iota$$

$R = \iota$	(prefix) code
$R = \langle \{(a,c)\} \rangle$	
$R = \langle \{(a,c), (b,c)\} \rangle$	

Example.

$$A = \{a, b, c\}$$
$$X = \{ab, c\}$$
$$S = \iota$$

$R = \iota$	(prefix) code
$R = \langle \{(a,c)\} \rangle$	(R,ι) -code
$R = \langle \{(a,c),(b,c)\} \rangle$	

Example.

$$A = \{a, b, c\}$$
$$X = \{ab, c\}$$
$$S = \iota$$

$R = \iota$	(prefix) code
$R = \langle \{(a,c)\} \rangle$	$(R,\iota) extsf{-code}$
$R = \langle \{(a,c),(b,c)\} \rangle$	abRc.c

$$x_1 \cdots x_m R y_1 \cdots y_n \Rightarrow n = m \text{ and } x_i S y_i \text{ for } i = 1, 2, \dots, m$$

Turku Centre *for* Computer Science

$$x_1 \cdots x_m R y_1 \cdots y_n \Rightarrow n = m \text{ and } x_i S y_i \text{ for } i = 1, 2, \dots, m$$

Turku Centre *for* Computer Science

$$x_1 \cdots x_m R y_1 \cdots y_n \Rightarrow n = m \text{ and } x_i S y_i \text{ for } i = 1, 2, \dots, m$$

$$x_1 \cdots x_m R y_1 \cdots y_n \Rightarrow n = m \text{ and } x_i S y_i \text{ for } i = 1, 2, \dots, m$$

Theorem 3. Every (R, S)-code X is a code.

Theorem 4. Let X be a subset of A^* . X is an (R, S)-code $\Leftrightarrow X$ is an (R, R)-code and $R_X \subseteq S_X$.

• finite $X \subseteq A^+$

- finite $X \subseteq A^+$
- $U_1 = \mathbf{R}(X)^{-1}X \setminus \{\varepsilon\}$

- finite $X \subseteq A^+$
- $U_1 = \mathbf{R}(X)^{-1}X \setminus \{\varepsilon\}$
- $U_{n+1} = \mathbf{R}(X)^{-1}U_n \cup \mathbf{R}(U_n)^{-1}X$ for $n \ge 1$

- finite $X \subseteq A^+$
- $U_1 = \mathbf{R}(X)^{-1}X \setminus \{\varepsilon\}$
- $U_{n+1} = \mathbf{R}(X)^{-1}U_n \cup \mathbf{R}(U_n)^{-1}X$ for $n \ge 1$
- Let $i \ge 2$ satisfy $U_i = U_{i-t}$ for some t > 0

- finite $X \subseteq A^+$
- $U_1 = \mathbf{R}(X)^{-1}X \setminus \{\varepsilon\}$
- $U_{n+1} = \mathbf{R}(X)^{-1}U_n \cup \mathbf{R}(U_n)^{-1}X$ for $n \ge 1$
- Let $i \ge 2$ satisfy $U_i = U_{i-t}$ for some t > 0
- X is a weak R-code if and only if

$$\varepsilon \not\in \bigcup_{j=1}^{i-1} U_j$$

Example. $A = \{a, b, c\}$ $X = \{abb, ca, c\}$ $R = \langle \{(a, b), (b, c)\} \rangle$

Example.

$$A = \{a, b, c\}$$

$$X = \{abb, ca, c\}$$

$$R = \langle \{(a, b), (b, c)\} \rangle$$

$$U_1 = R(X)^{-1}X \setminus \{\varepsilon\} = \{a\}$$

Example. $A = \{a, b, c\}$ $X = \{abb, ca, c\}$ $R = \langle \{(a, b), (b, c)\} \rangle$ $U_1 = R(X)^{-1}X \setminus \{\varepsilon\} = \{a\}$ $U_2 = R(X)^{-1}U_1 \cup R(U_1)^{-1}X = \emptyset \cup \{bb\}$

Example. $A = \{a, b, c\}$ $X = \{abb, ca, c\}$ $R = \langle \{(a, b), (b, c)\} \rangle$ $U_1 = R(X)^{-1}X \setminus \{\varepsilon\} = \{a\}$ $U_2 = R(X)^{-1}U_1 \cup R(U_1)^{-1}X = \emptyset \cup \{bb\}$ $U_3 = R(X)^{-1}U_2 \cup R(U_2)^{-1}X = \{\varepsilon, b\} \cup \{\varepsilon, b\}$

Example. $A = \{a, b, c\}$ $X = \{abb, ca, c\}$ $R = \langle \{(a, b), (b, c)\} \rangle$ $U_1 = R(X)^{-1}X \setminus \{\varepsilon\} = \{a\}$ $U_2 = R(X)^{-1}U_1 \cup R(U_1)^{-1}X = \emptyset \cup \{bb\}$ $U_3 = R(X)^{-1}U_2 \cup R(U_2)^{-1}X = \{\varepsilon, b\} \cup \{\varepsilon, b\}$

> \implies X is not an (R, R)-code ca.caRc.abb

$S \in S_{\min}(X, R)$: X is an (R, S)-code $\forall S' \subset S : X$ is not an (R, S')-code

 $S \in S_{\min}(X, R) : X \text{ is an } (R, S)\text{-code}$ $\forall S' \subset S : X \text{ is not an } (R, S')\text{-code}$ $S \in S_{\max}(X, R) : X \text{ is an } (R, S)\text{-code}$ $\forall S' \supset S : X \text{ is not an } (R, S')\text{-code}$ $R \in R_{\min}(X, S) : X \text{ is an } (R, S)\text{-code}$ $\forall R' \subset R : X \text{ is not an } (R', S)\text{-code}$ $R \in R_{\max}(X, S) : X \text{ is an } (R, S)\text{-code}$ $\forall R' \supset R : X \text{ is not an } (R', S)\text{-code}$

$$\begin{split} S \in S_{\min}(X,R) : & X \text{ is an } (R,S)\text{-code} \\ & \forall S' \subset S : X \text{ is not an } (R,S')\text{-code} \\ S \in S_{\max}(X,R) : & X \text{ is an } (R,S)\text{-code} \\ & \forall S' \supset S : X \text{ is not an } (R,S')\text{-code} \\ & R \in R_{\min}(X,S) : & X \text{ is an } (R,S)\text{-code} \\ & \forall R' \subset R : X \text{ is not an } (R',S)\text{-code} \\ & R \in R_{\max}(X,S) : & X \text{ is an } (R,S)\text{-code} \\ & \forall R' \supset R : X \text{ is not an } (R',S)\text{-code} \\ & \forall R' \supset R : X \text{ is not an } (R',S)\text{-code} \end{split}$$

•
$$S_{\max}(X,R) = \{\Omega\}$$

- $$\begin{split} S \in S_{\min}(X,R) : & X \text{ is an } (R,S)\text{-code} \\ & \forall S' \subset S : X \text{ is not an } (R,S')\text{-code} \\ S \in S_{\max}(X,R) : & X \text{ is an } (R,S)\text{-code} \\ & \forall S' \supset S : X \text{ is not an } (R,S')\text{-code} \\ & R \in R_{\min}(X,S) : & X \text{ is an } (R,S)\text{-code} \\ & \forall R' \subset R : X \text{ is not an } (R',S)\text{-code} \\ & R \in R_{\max}(X,S) : & X \text{ is an } (R,S)\text{-code} \\ & \forall R' \supset R : X \text{ is not an } (R',S)\text{-code} \\ & \forall R' \supset R : X \text{ is not an } (R',S)\text{-code} \end{split}$$
 - $S_{\max}(X,R) = \{\Omega\}$
 - $R_{\min}(X,S) = \{\iota\}$

• $S_{\min}(X, R)$ is a unique element

- $S_{\min}(X, R)$ is a unique element
- finding $S_{\min}(X, R)$ easy

- $S_{\min}(X, R)$ is a unique element
- finding $S_{\min}(X, R)$ easy
- $R_{\max}(X,S)$ can contain relations of different size

- $S_{\min}(X, R)$ is a unique element
- finding $S_{\min}(X, R)$ easy
- $R_{\max}(X,S)$ can contain relations of different size
- finding $R_{\max}(X, S)$ hard for arbitrary alphabets

- $S_{\min}(X, R)$ is a unique element
- finding $S_{\min}(X, R)$ easy
- $R_{\max}(X,S)$ can contain relations of different size
- finding $R_{\max}(X, S)$ hard for arbitrary alphabets

Problem:MAXIMAL RELATIONInstance: $X \subseteq A^+$, relation $S, k \in \mathbb{N}$ Question:Is max. size of $R \in R_{max}(X, S) \ge k$?

- $S_{\min}(X, R)$ is a unique element
- finding $S_{\min}(X, R)$ easy
- $R_{\max}(X,S)$ can contain relations of different size
- finding $R_{\max}(X, S)$ hard for arbitrary alphabets

Problem: MAXIMAL RELATION Instance: $X \subseteq A^+$, relation $S, k \in \mathbb{N}$ Question: Is max. size of $R \in R_{\max}(X, S) \ge k$? NP-complete

Relationally free monoids

A monoid $M \subseteq A^*$ is (R, S)-free if it has a subset $B \subseteq M$ (called an (R, S)-base of M) such that

(*i*) $M = B^*$, (*ii*) B is an (R, S)-code.

Relationally free monoids

A monoid $M \subseteq A^*$ is (R, S)-free if it has a subset $B \subseteq M$ (called an (R, S)-base of M) such that

(i) $M = B^*$, (ii) B is an (R, S)-code.

Theorem 5. X is (R, S)-code $\Leftrightarrow X^*$ is (R, S)-free with minimal generating set X

Theorem 6. M is (R, S)-free $\Leftrightarrow M$ is (R, R)-free and $R_B \subseteq S_B$ for the base B

Stability

A monoid $M \subseteq A^*$ is (R, S)-stable if $\forall u, v, w, u', v', w' \in A^*$:

Theorem 7 (Generalized Schützenberger's criterium).

$M \text{ is } (R,S) \text{-free} \Leftrightarrow M \text{ is } (R,S) \text{-stable}$

Theorem 7 (Generalized Schützenberger's criterium).

 $M \text{ is } (R,S) \text{-free} \Leftrightarrow M \text{ is } (R,S) \text{-stable}$

Theorem 8 (Generalized Tilson's result). Any nonempty intersection of (R, S)-free monoids of A^* is (R, S)-free.

• $\mathcal{F}_{(R,S)}(X) = \{M \mid X^* \subseteq M \subseteq A^*, M \text{ is } (R,S) \text{-free}\}$

- $\mathcal{F}_{(R,S)}(X) = \{M \mid X^* \subseteq M \subseteq A^*, M \text{ is } (R,S) \text{-free}\}$
- If $\mathcal{F}_{(R,S)}(X) \neq \emptyset$, then there exists

$$F_{(R,S)}(X) = \bigcap_{M \in \mathcal{F}_{(R,S)}(X)} M$$

- $\mathcal{F}_{(R,S)}(X) = \{M \mid X^* \subseteq M \subseteq A^*, M \text{ is } (R,S) \text{-free}\}$
- If $\mathcal{F}_{(R,S)}(X) \neq \emptyset$, then there exists

$$F_{(R,S)}(X) = \bigcap_{M \in \mathcal{F}_{(R,S)}(X)} M$$

• $F_{(R,S)}(X)$ is the (R,S)-free hull of X

- $\mathcal{F}_{(R,S)}(X) = \{M \mid X^* \subseteq M \subseteq A^*, M \text{ is } (R,S) \text{-free}\}$
- If $\mathcal{F}_{(R,S)}(X) \neq \emptyset$, then there exists

$$F_{(R,S)}(X) = \bigcap_{M \in \mathcal{F}_{(R,S)}(X)} M$$

- $F_{(R,S)}(X)$ is the (R,S)-free hull of X
- Theorem 9. Let $F_R = F_{(R,R)}(X)$. $F_{(R,S)}(X)$ exists $\Leftrightarrow \mathbb{R}_{F_R} \subseteq S_{F_R}$. Then $F_{(R,S)}(X) = F_R$.

 $C_f(X) = \{(u,v) \in X \times X \mid (u,v) \notin R, uX^* \cap R(vX^*) \neq \emptyset\}.$

Algorithm 1 (Base of (R, R)-free hull A_f). Input: finite $X \subseteq A^+$. Set $X_0 = X$, and iterate for $j \ge 0$.

- 1. Choose $(u, v) \in C_f(X_j, R)$ such that u = u'u'', where |u'| = |v| and $u'' \in A^+$. If no such pair exists, then stop and return $A_f(X) = X_j$.
- 2. Set $R'(u) = \{ pref_{|u'|}(w) \mid w \in (R_{X_j})^+(u) \}$ and set $R''(u) = \{ suf_{|u''|}(w) \mid w \in (R_{X_j})^+(u) \}$, where $(R_{X_j})^+$ is the transitive closure of R_{X_j} .

3. Set
$$X_{j+1} = (X_j \setminus (R_{X_j})^+(u)) \cup R'(u) \cup R''(u)$$
.

Theorem (Defect theorem). Let $X \subseteq A^+$ be a finite set and let B be the base of the free hull of X. Then $|B| \leq |X|$, and the equality holds if and only if X is a code.

Theorem (Defect theorem). Let $X \subseteq A^+$ be a finite set and let B be the base of the free hull of X. Then $|B| \leq |X|$, and the equality holds if and only if X is a code.

- $G_R(X) = (V, E)$: V = X, $(u, v) \in E \Leftrightarrow u R v$
- c(X, R) = the number of connected components of $G_R(X)$.

Theorem (Defect theorem). Let $X \subseteq A^+$ be a finite set and let B be the base of the free hull of X. Then $|B| \leq |X|$, and the equality holds if and only if X is a code.

- $G_R(X) = (V, E)$: V = X, $(u, v) \in E \Leftrightarrow u R v$
- c(X, R) = the number of connected components of $G_R(X)$.

Theorem 11 (Generalized defect theorem). Let *X* be a finite subset of A^* and let *B* be the base of the (R, R)-free hull of *X*. Then $c(B, R) \leq c(X, R)$, and the equality holds if and only if *X* is an (R, R)-code.

• *pcodes*: (R_{\uparrow}, ι) -codes over A_{\diamondsuit}

- *pcodes*: (R_{\uparrow}, ι) -codes over A_{\diamondsuit}
- *pfree*: monoid is generated by a pcode

- *pcodes*: (R_{\uparrow}, ι) -codes over A_{\diamondsuit}
- *pfree*: monoid is generated by a pcode

Corollary 1 (Defect theorem of partial words). Let X be a finite set of partial words, i.e., a set of words over the alphabet A_{\diamond} . Suppose that pfree hull of X exists and let B be its base. Then $|B| \leq |X|$, and the equality holds if and only if X is a pcode.

References

- [1] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218, 135–141, 1999.
- [2] J. Berstel and D. Perrin, Theory of Codes. Academic press, New York, 1985.
- [3] J. Berstel, D. Perrin, J.F. Perrot and A. Restivo, Sur le théorème du défaut. J. Algebra 60, 169–180, 1979.
- [4] F. Blanchet-Sadri, Codes, orderings, and partial words. Theoret. Comput. Sci. 329, 177–202, 2004.
- [5] F. Blanchet-Sadri and M. Moorefield, Pcodes of partial words. Manuscript, 2005.
- [6] M. Crochemore and W. Rytter, Jewels of Stringology. World Scientific Publishing, 2002.

References

- [7] M.R. Garey and D.S. Johnson, Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.
- [8] V. Halava, T. Harju and T. Kärki, Relational codes of words, TUCS Tech. Rep. 767, Turku Centre for Computer Science, Finland, 1–16, April 2006.
- [9] V. Halava, T. Harju and T. Kärki, Defect theorems with compatibility relations, TUCS Tech. Rep. 778, Turku Centre for Computer Science, Finland, 1–26, August 2006.
- [10] T. Harju and J. Karhumäki, Many aspects of Defect Theorems. Theor. Comput. Sci. 324, 35–54, 2004.
- [11] A.A. Sardinas and G.W. Patterson, A necessary and sufficient condition for the unique decomposition of coded messages. IRE Internat. Conv. Rec. 8, 104–108, 1953.
- [12] B. Tilson, The intersection of free submonoids of free monoids is free. Semigroup forum 4, 345–350, 1972.

