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Outline of Topics

• Word relations

• Relational codes

• Minimal and maximal relations

• Relationally free monoids and stability

• Hulls

• Defect effect
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Notations

A an alphabet
ε empty word

X a set of words over A∗

R ⊆ X × X a relation on X

xR y (x, y) ∈ R

ιX {(x, x) | x ∈ X}

ΩX {(x, y) | x, y ∈ X}

〈R〉 reflexive and symmetric closure of R

RY R ∩ (Y × Y )

R(X) {u ∈ A∗ | ∃x ∈ X : xR u}
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Word relations

• compatibility relation = reflexive and symmetric

• word relation R = compatibility relation and

a1 · · · am R b1 · · · bn ⇔ m = n and ai R bi for all i = 1, 2, . . . ,m

where a1, . . . , am, b1, . . . , bn ∈ A

• If uR v, then words u and v are R-compatible

•

{

multiplicativity: uR v, u′ R v′ ⇒ uu′ R vv′,
simplifiability: uu′ R vv′, |u| = |v| ⇒ uR v, u′ R v′
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Word relations

Example 1. A = {a, b, c}
R = 〈{(a, b)}〉 = {(a, a), (b, b), (c, c), (a, b), (b, a)}

abbaR baab

abc �R cbc

Example 2. Partial words

k n♦w l♦ dg e

♦n ow♦♦dg♦
k n ow l e dg e

R↑ = 〈{(♦, a) | a ∈ A}〉
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Relational codes

• Let R and S be word relations

• X ⊆ A∗ is an (R,S)-code if for all n,m ≥ 1 and
x1, . . . , xm, y1, . . . , yn ∈ X, we have

x1 · · · xm R y1 · · · yn ⇒ n = m and xi S yi for i = 1, 2, . . . ,m

• (R,S)-code relational code
(R, ι)-code strong R-code

(R,R)-code weak R-code
(ι, ι)-code code
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Relational codes

Example. A = {a, b, c}
X = {ab, c}
S = ι

R = ι

(prefix) code

R = 〈{(a, c)}〉

(R, ι)-code

R = 〈{(a, c), (b, c)}〉

abR c.c
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Relational codes

x1 · · · xm R y1 · · · yn ⇒ n = m and xi S yi for i = 1, 2, . . . ,m

ι

.

.

.

R1

R2

.

.

.

Ω

ι

.

.

.

S1

S2

.

.

.

Ω

1

Theorem 3. Every (R,S)-code X is a
code.

Theorem 4. Let X be a subset of A∗. X

is an (R,S)-code ⇔ X is an (R,R)-code
and RX ⊆ SX .
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Modified Sardinas-Patterson
algorithm

• finite X ⊆ A+

• U1 = R(X)−1X \ {ε}

• Un+1 = R(X)−1Un ∪ R(Un)−1X for n ≥ 1

• Let i ≥ 2 satisfy Ui = Ui−t for some t > 0

• X is a weak R-code if and only if

ε 6∈
i−1
⋃

j=1

Uj
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Modified Sardinas-Patterson
algorithm

Example. A = {a, b, c}
X = {abb, ca, c}
R = 〈{(a, b), (b, c)}〉

U1 = R(X)−1X \ {ε} = {a}

U2 = R(X)−1U1 ∪ R(U1)
−1X = ∅ ∪ {bb}

U3 = R(X)−1U2 ∪ R(U2)
−1X = {ε, b} ∪ {ε, b}

=⇒ X is not an (R,R)-code

ca.caR c.abb
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Minimal and maximal relations

S ∈ Smin(X,R) : X is an (R,S)-code
∀S′⊂S : X is not an (R,S′)-code

S ∈ Smax(X,R) : X is an (R,S)-code
∀S′⊃S : X is not an (R,S′)-code

R ∈ Rmin(X,S) : X is an (R,S)-code
∀R′⊂R : X is not an (R′, S)-code

R ∈ Rmax(X,S) : X is an (R,S)-code
∀R′⊃R : X is not an (R′, S)-code

• Smax(X,R) = {Ω}

• Rmin(X,S) = {ι}
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Minimal and maximal relations

• Smin(X,R) is a unique element

• finding Smin(X,R) easy

• Rmax(X,S) can contain relations of different size

• finding Rmax(X,S) hard for arbitrary alphabets

Problem: MAXIMAL RELATION
Instance: X ⊆ A+, relation S, k ∈ N

Question: Is max. size of R ∈ Rmax(X,S) ≥ k?
NP-complete
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Relationally free monoids

A monoid M ⊆ A∗ is (R,S)-free if it has a subset B ⊆ M

(called an (R,S)-base of M) such that
(i) M = B∗,
(ii) B is an (R,S)-code.

Theorem 5. X is (R,S)-code ⇔ X∗ is (R,S)-free with minimal
generating set X

Theorem 6. M is (R,S)-free ⇔ M is (R,R)-free and RB ⊆ SB

for the base B
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Stability

A monoid M ⊆ A∗ is (R,S)-stable if ∀u, v, w, u′, v′, w′ ∈ A∗:

u w v

︸ ︷︷ ︸ ︸ ︷︷ ︸

∈ M ∈ M

u
′

w
′

v
′

︷ ︸︸ ︷ ︷ ︸︸ ︷

∈ M ∈ M

R R R
⇒u, w ∈ M, u S u′

1
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Stability

Theorem 7 (Generalized Schützenberger’s criterium).

M is (R,S)-free ⇔ M is (R,S)-stable

Theorem 8 (Generalized Tilson’s result). Any nonempty
intersection of (R,S)-free monoids of A∗ is (R,S)-free.
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Hulls

• F(R,S)(X) = {M | X∗ ⊆ M ⊆ A∗,M is (R,S)-free}

• If F(R,S)(X) 6= ∅, then there exists

F(R,S)(X) =
⋂

M∈F(R,S)(X)

M

• F(R,S)(X) is the (R,S)-free hull of X

• Theorem 9. Let FR = F(R,R)(X).

F(R,S)(X) exists ⇔ RFR
⊆ SFR

. Then F(R,S)(X) = FR.
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Hulls

Cf (X) = {(u, v) ∈ X × X | (u, v) 6∈ R, uX∗ ∩ R(vX∗) 6= ∅}.

Algorithm 1 (Base of (R,R)-free hull Af ). Input: finite X ⊆ A+.
Set X0 = X , and iterate for j ≥ 0.

1. Choose (u, v) ∈ Cf (Xj , R) such that u = u′u′′, where

|u′| = |v| and u′′ ∈ A+. If no such pair exists, then stop and
return Af (X) = Xj .

2. Set R′(u) = {pref|u′|(w) | w ∈ (RXj
)+(u)} and set

R′′(u) = {suf|u′′|(w) | w ∈ (RXj
)+(u)}, where (RXj

)+ is
the transitive closure of RXj

.

3. Set Xj+1 =
(

Xj \ (RXj
)+(u)

)

∪ R′(u) ∪ R′′(u).
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Defect effect

Theorem (Defect theorem). Let X ⊆ A+ be a finite set and let B
be the base of the free hull of X . Then |B| ≤ |X|, and the equality
holds if and only if X is a code.

• GR(X) = (V,E): V = X, (u, v) ∈ E ⇔ uR v

• c(X,R) = the number of connected components of GR(X).

Theorem 11 (Generalized defect theorem). Let X be a finite
subset of A∗ and let B be the base of the (R,R)-free hull of X .
Then c(B,R) ≤ c(X,R), and the equality holds if and only if X is
an (R,R)-code.
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Defect effect

• pcodes: (R↑, ι)-codes over A♦

• pfree: monoid is generated by a pcode

Corollary 1 (Defect theorem of partial words). Let X be a finite set
of partial words, i.e., a set of words over the alphabet A♦. Suppose
that pfree hull of X exists and let B be its base. Then |B| ≤ |X|,
and the equality holds if and only if X is a pcode.
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