Tomi Kärki

Compatibility relations on codes and free monoids

Turku Centre for Computer Science

Introduction

Introduction

Introduction

Introduction

Introduction

Outline of Topics

- Word relations
- Relational codes
- Minimal and maximal relations
- Relationally free monoids and stability
- Hulls
- Defect effect

Notations

$$
\begin{array}{rl}
A & \text { an alphabet } \\
\varepsilon & \text { empty word } \\
X & \text { a set of words over } A^{*} \\
R \subseteq X \times X & \text { a relation on } X \\
x R y & (x, y) \in R \\
\iota_{X} & \{(x, x) \mid x \in X\} \\
\Omega_{X} & \{(x, y) \mid x, y \in X\} \\
\langle R\rangle & \text { reflexive and symmetric closure of } R \\
R_{Y} & R \cap(Y \times Y) \\
R(X) & \left\{u \in A^{*} \mid \exists x \in X: x R u\right\}
\end{array}
$$

Word relations

- compatibility relation = reflexive and symmetric

Word relations

- compatibility relation = reflexive and symmetric
- word relation $R=$ compatibility relation and

$$
\begin{aligned}
& a_{1} \cdots a_{m} R b_{1} \cdots b_{n} \Leftrightarrow m=n \text { and } a_{i} R b_{i} \text { for all } i=1,2, \ldots, m \\
& \text { where } a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n} \in A
\end{aligned}
$$

Word relations

- compatibility relation = reflexive and symmetric
- word relation $R=$ compatibility relation and
$a_{1} \cdots a_{m} R b_{1} \cdots b_{n} \Leftrightarrow m=n$ and $a_{i} R b_{i}$ for all $i=1,2, \ldots, m$
where $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n} \in A$
- If $u R v$, then words u and v are R-compatible

Word relations

- compatibility relation = reflexive and symmetric
- word relation $R=$ compatibility relation and
$a_{1} \cdots a_{m} R b_{1} \cdots b_{n} \Leftrightarrow m=n$ and $a_{i} R b_{i}$ for all $i=1,2, \ldots, m$
where $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n} \in A$
- If $u R v$, then words u and v are R-compatible
- $\begin{cases}\text { multiplicativity: } & u R v, u^{\prime} R v^{\prime} \Rightarrow u u^{\prime} R v v^{\prime}, \\ \text { simplifiability: } & u u^{\prime} R v v^{\prime},|u|=|v| \Rightarrow u R v, u^{\prime} R v^{\prime}\end{cases}$

Word relations

Example 1. $A=\{a, b, c\}$

$$
R=\langle\{(a, b)\}\rangle=\{(a, a),(b, b),(c, c),(a, b),(b, a)\}
$$

Word relations

Example 1. $A=\{a, b, c\}$

$$
\begin{aligned}
& R=\langle\{(a, b)\}\rangle=\{(a, a),(b, b),(c, c),(a, b),(b, a)\} \\
& a b b a R b a a b
\end{aligned}
$$

Word relations

Example 1. $A=\{a, b, c\}$ $R=\langle\{(a, b)\}\rangle=\{(a, a),(b, b),(c, c),(a, b),(b, a)\}$
abba R baab $a b c \not R c b c$

Word relations

Example 1. $A=\{a, b, c\}$

$$
\begin{aligned}
& R=\langle\{(a, b)\}\rangle=\{(a, a),(b, b),(c, c),(a, b),(b, a)\} \\
& a b b a R b a a b \\
& a b c \not R c b c
\end{aligned}
$$

Example 2.

Word relations

Example 1. $A=\{a, b, c\}$

$$
\begin{aligned}
& R=\langle\{(a, b)\}\rangle=\{(a, a),(b, b),(c, c),(a, b),(b, a)\} \\
& a b b a R b a a b \\
& a b c \not R c b c
\end{aligned}
$$

Example 2. Partial words

Word relations

Example 1. $A=\{a, b, c\}$ $R=\langle\{(a, b)\}\rangle=\{(a, a),(b, b),(c, c),(a, b),(b, a)\}$
abba R baab $a b c \not R c b c$

Example 2. Partial words

$$
\begin{aligned}
& k n \diamond w l \diamond d g e \\
& \diamond n \text { ow } w \diamond \Delta d g \diamond \\
& k n \text { owl } e d g e
\end{aligned}
$$

Word relations

Example 1. $A=\{a, b, c\}$

$$
\begin{aligned}
& R=\langle\{(a, b)\}\rangle=\{(a, a),(b, b),(c, c),(a, b),(b, a)\} \\
& a b b a R b a a b \\
& a b c \not R c b c
\end{aligned}
$$

Example 2. Partial words

$$
\begin{aligned}
& k n \diamond w l \diamond d g e \\
& \diamond n \text { ow } \diamond \diamond d g \diamond \\
& k \text { nowl edge } \\
& R_{\uparrow}=\langle\{(\diamond, a) \mid a \in A\}\rangle
\end{aligned}
$$

Relational codes

- Let R and S be word relations

Relational codes

- Let R and S be word relations
- $X \subseteq A^{*}$ is an (R, S)-code if for all $n, m \geq 1$ and $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in X$, we have

$$
x_{1} \cdots x_{m} R y_{1} \cdots y_{n} \Rightarrow n=m \text { and } x_{i} S y_{i} \text { for } i=1,2, \ldots, m
$$

Relational codes

- Let R and S be word relations
- $X \subseteq A^{*}$ is an (R, S)-code if for all $n, m \geq 1$ and $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in X$, we have

$$
x_{1} \cdots x_{m} R y_{1} \cdots y_{n} \Rightarrow n=m \text { and } x_{i} S y_{i} \text { for } i=1,2, \ldots, m
$$

- (R, S)-code relational code
(R, ι)-code strong R-code
(R, R)-code weak R-code
(ι, ι)-code code

Relational codes

Example. $\quad A=\{a, b, c\}$

$$
\begin{aligned}
& X=\{a b, c\} \\
& S=\iota
\end{aligned}
$$

$$
\begin{aligned}
& R=\iota \\
& R=\langle\{(a, c)\}\rangle \\
& R=\langle\{(a, c),(b, c)\}\rangle
\end{aligned}
$$

Relational codes

Example. $\quad A=\{a, b, c\}$

$$
X=\{a b, c\}
$$

$$
S=\iota
$$

R	$=\iota$	(prefix) code
R	$=\langle\{(a, c)\}\rangle$	
R	$=\langle\{(a, c),(b, c)\}\rangle$	

Relational codes

Example. $\quad A=\{a, b, c\}$

$$
X=\{a b, c\}
$$

$$
S=\iota
$$

$R=\iota$	(prefix) code
$R=\langle\{(a, c)\}\rangle$	(R, ι)-code
$R=\langle\{(a, c),(b, c)\}\rangle$	

Relational codes

Example. $\quad A=\{a, b, c\}$

$$
\begin{aligned}
& X=\{a b, c\} \\
& S=\iota
\end{aligned}
$$

$R=\iota$	(prefix) code
$R=\langle\{(a, c)\}\rangle$	(R, ι)-code
$R=\langle\{(a, c),(b, c)\}\rangle$	$a b R c . c$

Relational codes

$$
x_{1} \cdots x_{m} R y_{1} \cdots y_{n} \Rightarrow n=m \text { and } x_{i} S y_{i} \text { for } i=1,2, \ldots, m
$$

Relational codes

$$
x_{1} \cdots x_{m} R y_{1} \cdots y_{n} \Rightarrow n=m \text { and } x_{i} S y_{i} \text { for } i=1,2, \ldots, m
$$

Relational codes

$$
x_{1} \cdots x_{m} R y_{1} \cdots y_{n} \Rightarrow n=m \text { and } x_{i} S y_{i} \text { for } i=1,2, \ldots, m
$$

Relational codes

$$
x_{1} \cdots x_{m} R y_{1} \cdots y_{n} \Rightarrow n=m \text { and } x_{i} S y_{i} \text { for } i=1,2, \ldots, m
$$

Theorem 3. Every (R, S)-code X is a code.

Theorem 4. Let X be a subset of A^{*}. X is an (R, S)-code $\Leftrightarrow X$ is an (R, R)-code and $R_{X} \subseteq S_{X}$.

Modified Sardinas-Patterson algorithm

Modified Sardinas-Patterson algorithm

- finite $X \subseteq A^{+}$

Modified Sardinas-Patterson algorithm

- finite $X \subseteq A^{+}$
- $U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}$

Modified Sardinas-Patterson algorithm

- finite $X \subseteq A^{+}$
- $U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}$
- $U_{n+1}=R(X)^{-1} U_{n} \cup R\left(U_{n}\right)^{-1} X$ for $n \geq 1$

Modified Sardinas-Patterson algorithm

- finite $X \subseteq A^{+}$
- $U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}$
- $U_{n+1}=R(X)^{-1} U_{n} \cup R\left(U_{n}\right)^{-1} X$ for $n \geq 1$
- Let $i \geq 2$ satisfy $U_{i}=U_{i-t}$ for some $t>0$

Modified Sardinas-Patterson algorithm

- finite $X \subseteq A^{+}$
- $U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}$
- $U_{n+1}=R(X)^{-1} U_{n} \cup R\left(U_{n}\right)^{-1} X$ for $n \geq 1$
- Let $i \geq 2$ satisfy $U_{i}=U_{i-t}$ for some $t>0$
- X is a weak R-code if and only if

$$
\varepsilon \notin \bigcup_{j=1}^{i-1} U_{j}
$$

Modified Sardinas-Patterson algorithm

Example. $\quad A=\{a, b, c\}$

$$
\begin{aligned}
& X=\{a b b, c a, c\} \\
& R=\langle\{(a, b),(b, c)\}\rangle
\end{aligned}
$$

Modified Sardinas-Patterson algorithm

Example. $\quad A=\{a, b, c\}$

$$
\begin{aligned}
& X=\{a b b, c a, c\} \\
& R=\langle\{(a, b),(b, c)\}\rangle \\
& U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}=\{a\}
\end{aligned}
$$

Modified Sardinas-Patterson algorithm

Example. $\quad A=\{a, b, c\}$

$$
\begin{aligned}
& X=\{a b b, c a, c\} \\
& R=\langle\{(a, b),(b, c)\}\rangle \\
& U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}=\{a\} \\
& U_{2}=R(X)^{-1} U_{1} \cup R\left(U_{1}\right)^{-1} X=\emptyset \cup\{b b\}
\end{aligned}
$$

Modified Sardinas-Patterson algorithm

Example. $\quad A=\{a, b, c\}$

$$
\begin{aligned}
& X=\{a b b, c a, c\} \\
& R=\langle\{(a, b),(b, c)\}\rangle \\
& U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}=\{a\} \\
& U_{2}=R(X)^{-1} U_{1} \cup R\left(U_{1}\right)^{-1} X=\emptyset \cup\{b b\} \\
& U_{3}=R(X)^{-1} U_{2} \cup R\left(U_{2}\right)^{-1} X=\{\varepsilon, b\} \cup\{\varepsilon, b\}
\end{aligned}
$$

Modified Sardinas-Patterson algorithm

Example. $A=\{a, b, c\}$

$$
\begin{aligned}
& X=\{a b b, c a, c\} \\
& R=\langle\{(a, b),(b, c)\}\rangle \\
& U_{1}=R(X)^{-1} X \backslash\{\varepsilon\}=\{a\} \\
& U_{2}=R(X)^{-1} U_{1} \cup R\left(U_{1}\right)^{-1} X=\emptyset \cup\{b b\} \\
& U_{3}=R(X)^{-1} U_{2} \cup R\left(U_{2}\right)^{-1} X=\{\varepsilon, b\} \cup\{\varepsilon, b\}
\end{aligned}
$$

$\Longrightarrow X$ is not an (R, R)-code ca.ca R c.abb

Minimal and maximal relations

$\begin{aligned} S \in S_{\text {min }}(X, R): & X \text { is an }(R, S) \text {-code } \\ & \forall S^{\prime} \subset S: X \text { is not an }\left(R, S^{\prime}\right) \text {-code }\end{aligned}$

Minimal and maximal relations

$S \in S_{\min }(X, R): \quad X$ is an (R, S)-code $\forall S^{\prime} \subset S: X$ is not an $\left(R, S^{\prime}\right)$-code
$S \in S_{\max }(X, R): \quad X$ is an (R, S)-code
$\forall S^{\prime} \supset S: X$ is not an $\left(R, S^{\prime}\right)$-code
$R \in R_{\min }(X, S): \quad X$ is an (R, S)-code
$\forall R^{\prime} \subset R: X$ is not an $\left(R^{\prime}, S\right)$-code
$R \in R_{\max }(X, S): \quad X$ is an (R, S)-code
$\forall R^{\prime} \supset R: X$ is not an $\left(R^{\prime}, S\right)$-code

Minimal and maximal relations

$S \in S_{\min }(X, R): \quad X$ is an (R, S)-code $\forall S^{\prime} \subset S: X$ is not an $\left(R, S^{\prime}\right)$-code
$S \in S_{\max }(X, R): \quad X$ is an (R, S)-code
$\forall S^{\prime} \supset S: X$ is not an $\left(R, S^{\prime}\right)$-code
$R \in R_{\min }(X, S): \quad X$ is an (R, S)-code
$\forall R^{\prime} \subset R: X$ is not an $\left(R^{\prime}, S\right)$-code
$R \in R_{\max }(X, S): \quad X$ is an (R, S)-code
$\forall R^{\prime} \supset R: X$ is not an $\left(R^{\prime}, S\right)$-code

- $S_{\max }(X, R)=\{\Omega\}$

Minimal and maximal relations

$S \in S_{\min }(X, R): \quad X$ is an (R, S)-code $\forall S^{\prime} \subset S: X$ is not an $\left(R, S^{\prime}\right)$-code
$S \in S_{\max }(X, R): \quad X$ is an (R, S)-code $\forall S^{\prime} \supset S: X$ is not an $\left(R, S^{\prime}\right)$-code
$R \in R_{\min }(X, S): \quad X$ is an (R, S)-code $\forall R^{\prime} \subset R: X$ is not an $\left(R^{\prime}, S\right)$-code
$R \in R_{\max }(X, S): \quad X$ is an (R, S)-code
$\forall R^{\prime} \supset R: X$ is not an $\left(R^{\prime}, S\right)$-code

- $S_{\max }(X, R)=\{\Omega\}$
- $R_{\text {min }}(X, S)=\{\iota\}$

Minimal and maximal relations

- $S_{\text {min }}(X, R)$ is a unique element

Minimal and maximal relations

- $S_{\min }(X, R)$ is a unique element
- finding $S_{\text {min }}(X, R)$ easy

Minimal and maximal relations

- $S_{\min }(X, R)$ is a unique element
- finding $S_{\min }(X, R)$ easy
- $R_{\max }(X, S)$ can contain relations of different size

Minimal and maximal relations

- $S_{\min }(X, R)$ is a unique element
- finding $S_{\min }(X, R)$ easy
- $R_{\max }(X, S)$ can contain relations of different size
- finding $R_{\max }(X, S)$ hard for arbitrary alphabets

Minimal and maximal relations

- $S_{\min }(X, R)$ is a unique element
- finding $S_{\min }(X, R)$ easy
- $R_{\max }(X, S)$ can contain relations of different size
- finding $R_{\max }(X, S)$ hard for arbitrary alphabets

Problem: MAXIMAL RELATION Instance: $\quad X \subseteq A^{+}$, relation $S, k \in \mathbb{N}$
Question: Is max. size of $R \in R_{\max }(X, S) \geq k$?

Minimal and maximal relations

- $S_{\min }(X, R)$ is a unique element
- finding $S_{\min }(X, R)$ easy
- $R_{\max }(X, S)$ can contain relations of different size
- finding $R_{\max }(X, S)$ hard for arbitrary alphabets

Problem: MAXIMAL RELATION Instance: $\quad X \subseteq A^{+}$, relation $S, k \in \mathbb{N}$
Question: Is max. size of $R \in R_{\max }(X, S) \geq k$? NP-complete

Relationally free monoids

A monoid $M \subseteq A^{*}$ is (R, S)-free if it has a subset $B \subseteq M$ (called an (R, S)-base of M) such that
(i) $M=B^{*}$,
(ii) B is an (R, S)-code.

Relationally free monoids

A monoid $M \subseteq A^{*}$ is (R, S)-free if it has a subset $B \subseteq M$ (called an (R, S)-base of M) such that
(i) $M=B^{*}$,
(ii) $\quad B$ is an (R, S)-code.

Theorem 5. X is (R, S)-code $\Leftrightarrow X^{*}$ is (R, S)-free with minimal generating set X

Theorem 6. M is (R, S)-free $\Leftrightarrow M$ is (R, R)-free and $R_{B} \subseteq S_{B}$ for the base B

Stability

A monoid $M \subseteq A^{*}$ is (R, S)-stable if $\forall u, v, w, u^{\prime}, v^{\prime}, w^{\prime} \in A^{*}$:

Stability

Theorem 7 (Generalized Schützenberger's criterium).

$$
M \text { is }(R, S) \text {-free } \Leftrightarrow M \text { is }(R, S) \text {-stable }
$$

Stability

Theorem 7 (Generalized Schützenberger's criterium).

$$
M \text { is }(R, S) \text {-free } \Leftrightarrow M \text { is }(R, S) \text {-stable }
$$

Theorem 8 (Generalized Tilson's result). Any nonempty intersection of (R, S)-free monoids of A^{*} is (R, S)-free.

Hulls

- $\mathcal{F}_{(R, S)}(X)=\left\{M \mid X^{*} \subseteq M \subseteq A^{*}, M\right.$ is (R, S)-free $\}$

Hulls

- $\mathcal{F}_{(R, S)}(X)=\left\{M \mid X^{*} \subseteq M \subseteq A^{*}, M\right.$ is (R, S)-free $\}$
- If $\mathcal{F}_{(R, S)}(X) \neq \emptyset$, then there exists

$$
F_{(R, S)}(X)=\bigcap_{M \in \mathcal{F}_{(R, S)}(X)} M
$$

Hulls

- $\mathcal{F}_{(R, S)}(X)=\left\{M \mid X^{*} \subseteq M \subseteq A^{*}, M\right.$ is (R, S)-free $\}$
- If $\mathcal{F}_{(R, S)}(X) \neq \emptyset$, then there exists

$$
F_{(R, S)}(X)=\bigcap_{M \in \mathcal{F}_{(R, S)}(X)} M
$$

- $F_{(R, S)}(X)$ is the (R, S)-free hull of X

Hulls

- $\mathcal{F}_{(R, S)}(X)=\left\{M \mid X^{*} \subseteq M \subseteq A^{*}, M\right.$ is (R, S)-free $\}$
- If $\mathcal{F}_{(R, S)}(X) \neq \emptyset$, then there exists

$$
F_{(R, S)}(X)=\bigcap_{M \in \mathcal{F}_{(R, S)}(X)} M
$$

- $F_{(R, S)}(X)$ is the (R, S)-free hull of X
- Theorem 9. Let $F_{R}=F_{(R, R)}(X)$.
$F_{(R, S)}(X)$ exists $\Leftrightarrow R_{F_{R}} \subseteq S_{F_{R}}$. Then $F_{(R, S)}(X)=F_{R}$.

$$
C_{f}(X)=\left\{(u, v) \in X \times X \mid(u, v) \notin R, u X^{*} \cap R\left(v X^{*}\right) \neq \emptyset\right\} .
$$

Algorithm 1 (Base of (R, R)-free hull A_{f}). Input: finite $X \subseteq A^{+}$. Set $X_{0}=X$, and iterate for $j \geq 0$.

1. Choose $(u, v) \in C_{f}\left(X_{j}, R\right)$ such that $u=u^{\prime} u^{\prime \prime}$, where $\left|u^{\prime}\right|=|v|$ and $u^{\prime \prime} \in A^{+}$. If no such pair exists, then stop and return $A_{f}(X)=X_{j}$.
2. Set $R^{\prime}(u)=\left\{\operatorname{pref}_{\left|u^{\prime}\right|}(w) \mid w \in\left(R_{X_{j}}\right)^{+}(u)\right\}$ and set $R^{\prime \prime}(u)=\left\{\operatorname{suf}_{\left|u^{\prime \prime}\right|}(w) \mid w \in\left(R_{X_{j}}\right)^{+}(u)\right\}$, where $\left(R_{X_{j}}\right)^{+}$is the transitive closure of $R_{X_{j}}$.
3. Set $X_{j+1}=\left(X_{j} \backslash\left(R_{X_{j}}\right)^{+}(u)\right) \cup R^{\prime}(u) \cup R^{\prime \prime}(u)$.

Defect effect

Theorem (Defect theorem). Let $X \subseteq A^{+}$be a finite set and let B be the base of the free hull of X. Then $|B| \leq|X|$, and the equality holds if and only if X is a code.

Defect effect

Theorem (Defect theorem). Let $X \subseteq A^{+}$be a finite set and let B be the base of the free hull of X. Then $|B| \leq|X|$, and the equality holds if and only if X is a code.

- $G_{R}(X)=(V, E): V=X,(u, v) \in E \Leftrightarrow u R v$
- $c(X, R)=$ the number of connected components of $G_{R}(X)$.

Defect effect

Theorem (Defect theorem). Let $X \subseteq A^{+}$be a finite set and let B be the base of the free hull of X. Then $|B| \leq|X|$, and the equality holds if and only if X is a code.

- $G_{R}(X)=(V, E): V=X,(u, v) \in E \Leftrightarrow u R v$
- $c(X, R)=$ the number of connected components of $G_{R}(X)$.

Theorem 11 (Generalized defect theorem). Let X be a finite subset of A^{*} and let B be the base of the (R, R)-free hull of X. Then $c(B, R) \leq c(X, R)$, and the equality holds if and only if X is an (R, R)-code.

Defect effect

- pcodes: $\left(R_{\uparrow}, \iota\right)$-codes over A_{\diamond}

Defect effect

- pcodes: $\left(R_{\uparrow}, \iota\right)$-codes over A_{\diamond}
- pfree: monoid is generated by a pcode

Defect effect

- pcodes: $\left(R_{\uparrow}, \iota\right)$-codes over A_{\diamond}
- pfree: monoid is generated by a pcode

Corollary 1 (Defect theorem of partial words). Let X be a finite set of partial words, i.e., a set of words over the alphabet A_{\diamond}. Suppose that pfree hull of X exists and let B be its base. Then $|B| \leq|X|$, and the equality holds if and only if X is a pcode.

References

[1] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218, 135-141, 1999.
[2] J. Berstel and D. Perrin, Theory of Codes. Academic press, New York, 1985.
[3] J. Berstel, D. Perrin, J.F. Perrot and A. Restivo, Sur le théorème du défaut. J. Algebra 60, 169-180, 1979.
[4] F. Blanchet-Sadri, Codes, orderings, and partial words. Theoret. Comput. Sci. 329, 177-202, 2004.
[5] F. Blanchet-Sadri and M. Moorefield, Pcodes of partial words. Manuscript, 2005.
[6] M. Crochemore and W. Rytter, Jewels of Stringology. World Scientific Publishing, 2002.

References

[7] M.R. Garey and D.S. Johnson, Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.
[8] V. Halava, T. Harju and T. Kärki, Relational codes of words, TUCS Tech. Rep. 767, Turku Centre for Computer Science, Finland, 1-16, April 2006.
[9] V. Halava, T. Harju and T. Kärki, Defect theorems with compatibility relations, TUCS Tech. Rep. 778, Turku Centre for Computer Science, Finland, 1-26, August 2006.
[10] T. Harju and J. Karhumäki, Many aspects of Defect Theorems. Theor. Comput. Sci. 324, 35-54, 2004.
[11] A.A. Sardinas and G.W. Patterson, A necessary and sufficient condition for the unique decomposition of coded messages. IRE Internat. Conv. Rec. 8, 104-108, 1953.
[12] B. Tilson, The intersection of free submonoids of free monoids is free. Semigroup forum 4, 345-350, 1972.

