Efficient validation and construction of border arrays

J.-P. Duval T. Lecroq A. Lefebvre

Laboratoire d'Informatique, de Traitement de I'Information et des Systèmes University of Rouen, France

JM 2006
30/08/2006 Rennes, France

Outline

(2) New results
(3) Conclusions and perspectives

Outline

(1) Recalls

(2) New results

(3) Conclusions and perspectives

Border

Definition

A string u is a border of a string w if u is both a prefix and a suffix of w such that $u \neq w$.

Definition

The border of a string w is the longest of its borders. It is denoted by Border (w).

Border array

Definition

Given a string $w[1 . . n]$ of length n, the array f defined by

$$
f[i]=|\operatorname{Border}(w[1 . . i])|
$$

for $1 \leq i \leq n$ is called the border array of w.

It constitutes the "failure function" of the Morris-Pratt (1970) string matching algorithm.

Border array

Example

i	1	2	3	4	5	6	7	8	9	10	11	12	12	14	15
$w[i]$	a	b	a	b	a	c	a	a	b	c	a	b	a	b	a
$f[i]$	0	0	1	2	3	0	1	1	2	0	1	2	3	4	5

$\mathcal{D}(w)$

Definition

The DFA $\mathcal{D}(w)$ recognizing the language $\Sigma^{*} w$ is defined by $\mathcal{D}(w[1 . . n])=\left(Q, \Sigma, q_{0}, T, F\right)$ where

- $Q=\{0,1, \ldots, n\}$ is the set of states;
- Σ is the alphabet;
- $q_{0}=0$ is the initial state;
- $T=\{n\}$ is the set of accepting states;
- $F=\{(i, w[i+1], i+1) \mid 1 \leq i \leq n\} \cup$
$\{(i, a,|\operatorname{Border}(w[1 . . i] a)|) \mid 0 \leq i<n$ and $a \in \Sigma \backslash\{w[i+1]\}\}$
is the set of transitions.
The underlying unlabeled graph is called the skeleton of the automaton.

DFA

Example

\mathcal{D} (aabab): transitions leading to state 0 are omitted.

$\delta(i)$ and $\delta^{\prime}(i)$

Definition

For $0 \leq i \leq n$:

- $\delta(i)=(j \mid(i, a, j) \in F$ with $a \in A$ and $j \neq 0)$;
- $\delta^{\prime}(i)=(j \mid(i, a, j) \in F$ with $a \in A$ and $j \notin\{0, i+1\})$.

In words:

- $\delta(i)$ is the list of the targets of the significant transitions leaving state i;
- $\delta^{\prime}(i)$ is the list of the targets of the backward significant transitions leaving state i.

DFA

Example

\mathcal{D} (aabab): transitions leading to state 0 are omitted.

$$
\delta(4)=(5,2) \text { and } \delta^{\prime}(4)=(2)
$$

Complexity

Theorem 1 [Simon 1993]

There are at most n significant backward transitions in $\mathcal{D}(w[1 . . n])$.

Valid

Definition

An integer array $f[1 . . n]$ is a valid array (or is valid) if and only if it is the border array of at least one string $w[1 . . n]$.

The main problems

Validation

Given an integer array, is it valid? On which alphabet size?

Construction of a string

Given a valid array, exhibit a string for which this array is the border array?

Construction of border arrays

Construct all the distinct border arrays for some length.

Motivations

Theoretical interest

Generating minimal test sets for various string algorithms

Previous works

圊
D．Moore，W．F．Smyth，and D．Miller．
Counting distinct strings．
Algorithmica，23（1）：1－13， 1999.
囲 F．Franěk，S．Gao，W．Lu，P．J．Ryan，W．F．Smyth，Y．Sun， and L．Yang．
Verifying a border array in linear time．
Journal on Combinatorial Mathematics and Combinatorial Computing，42：223－236， 2002.

雷 J．－P．Duval，T．Lecroq，and A．Lefebvre．
Border array on bounded alphabet．
Journal of Automata，Languages and Combinatorics， 10（1）：51－60， 2005.

Previous works

Web site

http://al.jalix.org/Baba/Applet/baba.php

The candidates

Definition

For $1 \leq i \leq n$, we define

- $f^{1}[i]=f[i]$; and ,
- $f^{\ell}[i]=f\left[f^{\ell-1}[i]\right]$ for $f[i]>0$;
- $C(f, i)=\left(1+f[i-1], 1+f^{2}[i-1], \ldots, 1+f^{m}[i-1]\right)$ where $f^{m}[i-1]=0$.

Validation

There are two necessary and sufficient conditions for an integer array f to be valid:
(1) $f[1]=0$ and for $2 \leq i \leq n$, we have $f[i] \in(0) \uplus C(f, i)$;
(2) for $i \geq 2$ and for every $j \in C(f, i)$ with $j>f[i]$, we have $f[j] \neq f[i]$.

Validation

Example

i	1	2	3	4	5	6	7	8	9	10	11	12	12	14	15	16
$f[i]$	0	0	1	2	3	0	1	1	2	0	1	2	3	4		$?$

$C(f, 16)=\left(f[15]+1, f[f[15]]+1, f[f[f[15]]]+1, f^{4}[15]+1\right)=$ $(6,4,2,1)$.

The candidates for $f[16]$ are in $C(f, 16) \uplus(0)=(6,4,2,1,0)$.
Among these values 2 is not valid since $f[4]=2$.

Validation

Theorem 2 [FGLRSSY 02]

The validation of an array f of n integers can be done in $O(n)$.

Theorem 3 [FGLRSSY 02]

The delay (time spent on one element) is in $O(n)$.

Validation

Example

i	1	2	3	4	5	6	7
$w[i]$	a	a	a	a	a	a	$?$
$f[i]$	0	1	2	3	4	5	1

Outline

(2) New results

(3) Conclusions and perspectives

$$
\vec{f} \longrightarrow \delta
$$

$$
\begin{aligned}
& \text { Proposition } 1 \\
& \delta(0)=(1) \text { and } \\
& \delta(j)=(j+1) \uplus \delta(f[j]) \uplus(f[j+1]) \text { for } 1 \leq j<n \text { and } \\
& \delta(n)=\delta(f[n]) .
\end{aligned}
$$

Example

Independence from the alphabet

Important

This computation is completely independent from the underlying string(s).

New validation algorithm

Assuming that $f[1 . . i]$ is valid, all the values for $f[i+1]$ are in $\delta^{\prime}(i) \uplus(0)$ and they do not need to be checked.

Using Proposition 1, the skeleton of the automaton is build online during the checking of the array f.

If $f[i+1]$ is equal to 0 , it is enough to check if the cardinality of $\delta^{\prime}(i)$ is strictly smaller than the alphabet size s to ensure that f is valid up to position $i+1$.

LITIS

New algorithm

Example

i	1	2	3	4	5	6	7	8	9	10	11	12	12	14	15	16
$f[i]$	0	0	1	2	3	0	1	1	2	0	1	2	3	4		$?$

The candidates for $f[16]$ are in $\delta^{\prime}(15) \uplus(0)=(6,4,1,0)$.

Complexity

Theorem 4

The validity of a given integer array $f[1 . . n]$ can be checked in time and space $O(n)$.
If f is valid, a string for which w is the border array can be computed with the same complexities.

Theorem 5

The delay is $O(\min \{n$, card $\Sigma\})$.

Construction of all the distinct border arrays

An algorithm for generating all valid arrays becomes then obvious: all the valid candidates for $f[i]$ are in $\delta^{\prime}(i-1) \uplus(0)$.

Counting

i	$B(i)$	$B(i, 2)$	$B(i, 3)$	$B(i, 4)$
1	1	1	1	1
2	2	2	2	2
3	4	4	4	4
4	9	8	9	9
5	20	16	20	20
6	47	32	47	47
7	110	64	110	110
8	263	128	262	263
9	630	256	626	630
10	1525	512	1509	1525
11	3701	1024	3649	3701
12	9039	2048	8872	9039
13	22,140	4096	21,640	22,140
14	54,460	8192	52,993	54,460
15	134,339	16,384	130,159	134,339
16	332,439	32,768	320,696	332,438

Number of distinct border arrays on a binary alphabet

Proposition 2
 $B(n, 2)=2^{n-1}$.

Number of distinct border arrays on an alphabet of size s

```
Proposition 3
B(j,s)=B(j) for j<2s.
```


Proposition 4

$B\left(2^{s}, s\right)=B\left(2^{s}\right)-1$.
The missing border array has the following form:
$0 . .2^{0}-1 \cdot 0 . .2^{1}-1 \cdots 0 . .2^{s-1}-1$.
It corresponds to the string $w_{s} \cdot \sigma[s+1]$ (of length 2^{s}) where w_{s} is recursively defined by:
$w_{1}=a$ and
$w_{i}=w_{i-1} \cdot \sigma[i] \cdot w_{i-1}$ for $i>1$.

Example

The following array $f[1 . .16]$ if valid on an alphabet of size at least 5:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$w_{4}[i]$	a	b	a	c	a	b	a	d	a	b	a	c	a	b	a	e
$f[i]$	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7	0

Outline

(1) Recalls

(2) New results

(3) Conclusions and perspectives

Conclusions

Given an integer array f we can:

- say if f is valid,
- on an unbounded size alphabet or
- on a bounded size alphabet;
- exhibit strings for which f is the border array.

$$
f \longleftrightarrow \delta
$$

Construct all the distinct border arrays

Perspectives

Get exact bounds on the number of distinct border arrays.

Perspectives

Let us recall the "failure function" of the Knuth-Morris-Pratt (1977) string matching algorithm
$g[j]=\max \{i \mid w[1 . . i-1]$ suffix of $w[1 . . j-1]$ and $w[i] \neq w[j]\}$.

We know that

$$
g[j]=\max \{\delta(j-1)-(j)\}=\max \{\delta(f[j-1])-(f[j])\}
$$

