Efficient validation and construction of border arrays

J.-P. Duval T. Lecroq A. Lefebvre

Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes University of Rouen, France

> JM 2006 30/08/2006 Rennes, France

Duval, Lecroq, Lefebvre

Validation of border arrays 2/38

2 New results

3 Conclusions and perspectives

Duval, Lecroq, Lefebvre

Validation of border arrays 3/38

Definition

A string u is a border of a string w if u is both a prefix and a suffix of w such that $u \neq w$.

Definition

The border of a string w is the longest of its borders. It is denoted by Border(w).

Duval, Lecroq, Lefebvre

Validation of border arrays 4/38

Definition

Given a string $\boldsymbol{w}[1..n]$ of length $\boldsymbol{n}\text{,}$ the array f defined by

f[i] = |Border(w[1..i])|

for $1 \le i \le n$ is called the border array of w.

It constitutes the "failure function" of the Morris-Pratt (1970) string matching algorithm.

Duval, Lecroq, Lefebvre

Validation of border arrays 5/38

E	Example															
	i	1	2	3	4	5	6	7	8	9	10	11	12	12	14	15
	w[i]	a	b	a	b	a	С	a	a	b	с	a	b	a	b	a
	f[i]	0	0	1	2	3	0	1	1	2	с 0	1	2	3	4	5

Duval, Lecroq, Lefebvre

Validation of border arrays 6/38

Definition

The DFA $\mathcal{D}(w)$ recognizing the language Σ^*w is defined by $\mathcal{D}(w[1..n])=(Q,\Sigma,q_0,T,F)$ where

- $Q = \{0, 1, \dots, n\}$ is the set of states;
- Σ is the alphabet;
- $q_0 = 0$ is the initial state;
- $T = \{n\}$ is the set of accepting states;

•
$$F = \{(i, w[i+1], i+1) \mid 1 \le i \le n\} \cup \{(i, a, |Border(w[1..i]a)|) \mid 0 \le i < n \text{ and } a \in \Sigma \setminus \{w[i+1]\}\}$$
 is the set of transitions.

The underlying unlabeled graph is called the *skeleton* of the automaton.

Recalls

New results

et des Systèmes LITIS

Laboratoin d'Informatique

$$\delta(i)$$
 and $\delta'(i)$

Definition

For $0 \leq i \leq n$:

- $\delta(i) = (j \mid (i, a, j) \in F \text{ with } a \in A \text{ and } j \neq 0);$
- $\delta'(i) = (j \mid (i, a, j) \in F \text{ with } a \in A \text{ and } j \notin \{0, i+1\}).$

In words:

- δ(i) is the list of the targets of the significant transitions leaving state i;
- $\delta'(i)$ is the list of the targets of the backward significant transitions leaving state i.

Theorem 1 [Simon 1993]

There are at most n significant backward transitions in $\mathcal{D}(w[1..n])$.

Duval, Lecroq, Lefebvre

Validation of border arrays 11/38

Definition

An integer array f[1..n] is a valid array (or is valid) if and only if it is the border array of at least one string w[1..n].

Duval, Lecroq, Lefebvre

Validation of border arrays 12/38

New results

et des Systèmes LITIS

Laboratoire d'Informatique.

rmation

The main problems

Validation

Given an integer array, is it valid? On which alphabet size?

Construction of a string

Given a valid array, exhibit a string for which this array is the border array?

Construction of border arrays

Construct all the distinct border arrays for some length.

Duval, Lecroq, Lefebvre

Validation of border arrays 13/38

Theoretical interest

Generating minimal test sets for various string algorithms

Duval, Lecroq, Lefebvre

Validation of border arrays 14/38

D. Moore, W. F. Smyth, and D. Miller.
 Counting distinct strings.
 Algorithmica, 23(1):1–13, 1999.

 F. Franěk, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang.
 Verifying a border array in linear time.
 Journal on Combinatorial Mathematics and Combinatorial Computing, 42:223–236, 2002.

J.-P. Duval, T. Lecroq, and A. Lefebvre. Border array on bounded alphabet. Journal of Automata, Languages and Combinatorics, 10(1):51–60, 2005.

Web site

http://al.jalix.org/Baba/Applet/baba.php

Duval, Lecroq, Lefebvre

Validation of border arrays 16/38

Recalls

New results

de l'Information et des Systèmes LITIS

Laboratoire d'Informatique, de Traitement

The candidates

Definition

For $1 \leq i \leq n$, we define

•
$$f^1[i] = f[i]$$
; and ,
• $f^\ell[i] = f[f^{\ell-1}[i]]$ for $f[i] > 0$;
• $C(f,i) = (1 + f[i-1], 1 + f^2[i-1], \dots, 1 + f^m[i-1])$ where $f^m[i-1] = 0$.

There are two necessary and sufficient conditions for an integer array $f\ {\rm to}\ {\rm be}\ {\rm valid}:$

•
$$f[1] = 0$$
 and for $2 \le i \le n$, we have $f[i] \in (0) \uplus C(f,i)$;

2 for
$$i \ge 2$$
 and for every $j \in C(f,i)$ with $j > f[i]$, we have $f[j] \ne f[i]$.

Duval, Lecroq, Lefebvre

Validation of border arrays 18/38

Among these values 2 is not valid since f[4] = 2.

Theorem 2 [FGLRSSY 02]

The validation of an array f of n integers can be done in O(n).

Theorem 3 [FGLRSSY 02]

The delay (time spent on one element) is in O(n).

Duval, Lecroq, Lefebvre

Validation of border arrays 20/38

Example													
	i	1	2	3	4	5	6	7					
_	w[i]	a	a	a	a	а	а	?					
	f[i]	0	а 1	2	3	4	5	1					

Duval, Lecroq, Lefebvre

Validation of border arrays 21/38

3 Conclusions and perspectives

Duval, Lecroq, Lefebvre

Validation of border arrays 22/38

$$\begin{split} \delta(0) &= (1) \text{ and} \\ \delta(j) &= (j+1) \uplus \delta(f[j]) \ \cup (f[j+1]) \text{ for } 1 \leq j < n \text{ and} \\ \delta(n) &= \delta(f[n]). \end{split}$$

Duval, Lecroq, Lefebvre

Validation of border arrays 23/38

Duval, Lecrog, Lefebvre

Validation of border arrays 24/38

UNIVERSITÉ DE ROUEN

Important

This computation is completely independent from the underlying $\mathsf{string}(\mathsf{s}).$

Duval, Lecroq, Lefebvre

Validation of border arrays 25/38

Assuming that f[1..i] is valid, all the values for f[i+1] are in $\delta'(i) \uplus (0)$ and they do not need to be checked.

Using Proposition 1, the skeleton of the automaton is build online during the checking of the array f.

If f[i + 1] is equal to 0, it is enough to check if the cardinality of $\delta'(i)$ is strictly smaller than the alphabet size s to ensure that f is valid up to position i + 1.

Example 2 3 4 5 6 7 8 9 i1 10 11 12 12 14 15 16 0 1 1 2 0 1 f[i]0 2 2 3 4 ? 3 0 5 1

The candidates for f[16] are in $\delta'(15) \uplus (0) = (6, 4, 1, 0)$.

Theorem 4

The validity of a given integer array f[1..n] can be checked in time and space O(n). If f is valid, a string for which w is the border array can be computed with the same complexities.

Theorem 5

The delay is $O(\min\{n, card \Sigma\})$.

An algorithm for generating all valid arrays becomes then obvious: all the valid candidates for f[i] are in $\delta'(i-1) \uplus (0)$.

Duval, Lecroq, Lefebvre

Validation of border arrays 29/38

Recalls

de l'Information et des Systèmes

Laboratoire d'Informatique, de Traitement

i	B(i)	B(i,2)	B(i,3)	B(i,4)		
1	1	1	1	1		
2	2	2	2	2		
3	4	4	4	4		
4	9	8	9	9		
5	20	16	20	20		
6	47	32	47	47		
7	110	64	110	110		
8	263	128	262	263		
9	630	256	626	630		
10	1525	512	1509	1525		
11	3701	1024	3649	3701		
12	9039	2048	8872	9039		
13	22,140	4096	21,640	22,140		
14	54,460	8192	52,993	54,460		
15	134,339	16,384	130,159	134,339		
16	332,439	32,768	320,696	332,438		

Duval, Lecroq, Lefebvre

Validation of border arrays 30/38

$$B(n,2) = 2^{n-1}$$

Duval, Lecroq, Lefebvre

Validation of border arrays 31/38

 $B(j,s) = B(j) \text{ for } j < 2^s.$

Duval, Lecroq, Lefebvre

Validation of border arrays 32/38

 $B(2^s, s) = B(2^s) - 1.$

The missing border array has the following form: $0..2^0 - 1 \cdot 0..2^1 - 1 \cdots 0..2^{s-1} - 1.$

It corresponds to the string $w_s \cdot \sigma[s+1]$ (of length 2^s) where w_s is recursively defined by: $w_1 = a$ and

$$w_i = w_{i-1} \cdot \sigma[i] \cdot w_{i-1} \text{ for } i > 1.$$

Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes

Recalls

Example

The following array $f [1..16] \mbox{ if valid on an alphabet of size at least 5: }$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$w_4[i]$	a	b	а	с	a	b	a	d	а	b	a	С	a	b	a	е
$ \begin{array}{c} w_4[i] \\ f[i] \end{array} $	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7	0

Duval, Lecroq, Lefebvre

Validation of border arrays 34/38

2 New results

Duval, Lecroq, Lefebvre

Validation of border arrays 35/38

Given an integer array f we can:

- say if f is valid,
 - on an unbounded size alphabet or
 - on a bounded size alphabet;
- exhibit strings for which f is the border array.

 $f \longleftrightarrow \delta$

Construct all the distinct border arrays

Get exact bounds on the number of distinct border arrays.

Duval, Lecroq, Lefebvre

Validation of border arrays 37/38

Let us recall the "failure function" of the Knuth-Morris-Pratt (1977) string matching algorithm

$$g[j] = \max\{i \mid w[1..i-1] \text{ suffix of } w[1..j-1] \text{ and } w[i] \neq w[j]\}.$$

We know that

$$g[j] = \max\{\delta(j-1) - (j)\} = \max\{\delta(f[j-1]) - (f[j])\}.$$

Duval, Lecroq, Lefebvre

Validation of border arrays 38/38