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Definitions

Given a finite automaton 2 =(Q,2,0)
w3 is a finite word,

- uld ¥, vlOx¥ and w1 “2% are left, right and bi-infinite
words,
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Definitions

Given a finite automaton 2 =(Q,2,0)
w3 is a finite word,

- uld ¥, vlOx¥ and w1 “2% are left, right and bi-infinite
words,

*(q,)1ci<., IS @ finite path in A4 labeled by w = (a;),.,, iff
qi+1D6(qiaai) !

e (9:)ico, (Ti)iso and (q,).,, are left, right and bi-
infinite paths labeled by (a;),., , (a,),,, and (&;)y iff
Qi+1|:| 6(qi1ai) .
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Local Automata

A finite automaton 4 =(Q,Z,9d)is called local if there

exist values m and k, 0<m< k, such that any two

equally labeled paths of length k go through the
same state at time m.
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A finite automaton 4 =(Q,Z,9d)is called local if there

exist values m and k, 0<m< k, such that any two

equally labeled paths of length k go through the
same state at time m.

The smallest value for k is called the synchronization delay of A4 .

September 1, 2006 JM'06



9

Wn utomata

We say that a finite automaton 4=(Q,Z,9) is
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Wn utomata

We say that a finite automaton 4=(Q,Z,9) is

- ““Injective iff for any bi-infinite word W “Z” there
exists at most one path labeled by w;
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Automata
We say that a finite automaton 4=(Q,Z,9) is

- ““Injective iff for any bi-infinite word W “Z” there
exists at most one path labeled by w;

. “Ysurjective iff for any bi-infinite word wl “Z“there
exists at least one path labeled by w;
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We say that a finite automaton 4=(Q,Z,9) is

- ““Injective iff for any bi-infinite word W “Z” there
exists at most one path labeled by w;

. “Ysurjective iff for any bi-infinite word wl “Z“there
exists at least one path labeled by w;

. ““bijective iff for any bi-infinite word W1 “Z% there
exists exactly one path labeled by w;
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Wn utomata

We say that a finite automaton 4=(Q,Z,9) is

- ““Injective iff for any bi-infinite word W “Z” there
exists at most one path labeled by w;

. “Ysurjective iff for any bi-infinite word wl “Z“there
exists at least one path labeled by w;

. ““bijective iff for any bi-infinite word W1 “Z% there
exists exactly one path labeled by w;

- Obs. We may restrict ourselves to the non-transient part of
the automaton (all states are part of some bi-infinite path)
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Wn utomata

a,b

Example: G@
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Wn utomata

Example:
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Example:

An automaton is “* injective iff it is local. Moreover,
the class of “* bijective automata is strictly included
in the class of local automata.
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Decision algorithms

Given an automaton 4 =(Q,2,0) how efficiently can
we decide whether:

» Ais @injective
- Ais “*surjective

« Ais “bijective
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Decision algorithms

Given an automaton 4 =(Q,2,0) how efficiently can
we decide whether:

« A is @xinjective (quadratic time compexity)
- Ais “*surjective

« Ais “bijective
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Decision algorithms

Given an automaton 4 =(Q,2,0) how efficiently can
we decide whether:

« A is @xinjective (quadratic time compexity)
- Ais “surjective (PSPACE-complete)

« Ais “bijective
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Decision algorithms

Given an automaton 4 =(Q,2,0) how efficiently can
we decide whether:

« A is @xinjective (quadratic time compexity)
- Ais “*surjective (PSPACE-complete)
« Ais “bijective (polynomial time complexity)

September 1, 2006 JM'06

AT

\Wee,
==
AN



s

/

Decision algorithms

Given an automaton 4 =(Q,2,0) how efficiently can
we decide whether:

« A is @xinjective (quadratic time complexity)

- Ais “surjective (PSPACE-complete)

« Ais “bijective (polynomial time complexity)

- Given two “*injective automata, decide whether the two
languages of bi-infinite words obtained as labels of bi-infinite
paths are equal, i.e. the two automata are & equivalent.
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Sofic Systems
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Sofic Systems

Given X an alphabeth, “X” is called the full shift.
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Sofic Systems
Given X an alphabeth, “X” is called the full shift.

S C¥XY% is a subshift iff it is closed and shift invariant.
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Sofic Systems
Given X an alphabeth, “X” is called the full shift.

S C¥XY% is a subshift iff it is closed and shift invariant.

Given a finite automaton 4=(Q,Z,9), the set of bi-
infinite words obtained as labels of all bi-infinite
paths in that automaton, is a subshift.
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Sofic Systems
Given X an alphabeth, “X” is called the full shift.

S C¥XY% is a subshift iff it is closed and shift invariant.

Given a finite automaton 4=(Q,Z,9), the set of bi-
infinite words obtained as labels of all bi-infinite
paths in that automaton, is a subshift.

— Any subshift obtained in this way is called a sofic system,
while the automaton generating it is called a presentation.
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Sofic Systems
Given X an alphabeth, “X” is called the full shift.

S C¥XY% is a subshift iff it is closed and shift invariant.

Given a finite automaton 4=(Q,Z,9), the set of bi-
infinite words obtained as labels of all bi-infinite
paths in that automaton, is a subshift.

— Any subshift obtained in this way is called a sofic system,
while the automaton generating it is called a presentation.

- Obs. A sofic system may have more than one presentation.
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Sofic Systems

A subshift S is called of finite type iff all bi-infinite
words from S avoid a finite number of factors.
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Sofic Systems

A subshift S is called of finite type iff all bi-infinite
words from S avoid a finite number of factors.

A subshift is of finite type iff it has a local presentation
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Decision algorithms

Given an automaton 4 =(Q,2,0) how efficiently can
we decide whether:

« A is @xinjective (quadratic time complexity)

- Ais “surjective (PSPACE-complete)

« Ais “bijective (polynomial time complexity)

- Given two “*injective automata, decide whether the two
languages of bi-infinite words obtained as labels of bi-infinite
paths are equal, i.e. the two automata are & equivalent.
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Decision algorithms

Given an automaton 4 =(Q,2,0) how efficiently can
we decide whether:

« A is @xinjective (quadratic time complexity)
- Ais “*surjective (PSPACE-complete)
« Ais “bijective (polynomial time complexity)

- Given two “*injective automata, decide whether the two
languages of bi-infinite words obtained as labels of bi-infinite
paths are equal, i.e. the two automata are & equivalent.

— Decide whether two subshifts of finite type are equal, given
their presentation as “*injective (local) automata.
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Decision algorithms- “*injectivity

Quadratic in the number of states of the automaton
(M.-P. Beal, Codage Symbolique, 1993)
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Decision algorithms- “*injectivity

Quadratic in the number of states of the automaton
(M.-P. Beal, Codage Symbolique, 1993)

« Construct the pair graph
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Decision algorithms- “*injectivity

Quadratic in the number of states of the automaton
(M.-P. Beal, Codage Symbolique, 1993)

« Construct the pair graph
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Decision algorithms- “*injectivity

Quadratic in the number of states of the automaton
(M.-P. Beal, Codage Symbolique, 1993)

« Construct the pair graph

« Test for the existence of a loop containing a vertex of the
form (g,q;) , with g #q;.
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Decision algorithms- “*surjectivity %[

Testing whether a finite automaton is “**surjective is
PSPACE-complete
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Decision algorithms-“*surjectivity *'gﬂ#*

Testing whether a finite automaton is “**surjective is
PSPACE-complete

. Given a finite automaton 4 = (Q,2,1,0,F) , we construct

'=(Q,2 O0{#}, d') such that for all g; OF and q. O,
we add a transition g, L10'(q; ,#) .
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Decision algorithms-“*surjectivity *'gﬂ#*

Testing whether a finite automaton is “**surjective is
PSPACE-complete

. Given a finite automaton 4 = (Q,2,1,0,F) , we construct

A'=(Q,Z O{#}, ') such that for all g; UF and q.OI,
we add a transition g, 10" (q; ,#) .

- Claim: A recognizes X iff A' is @& surjective.
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Decision algorithms- “*surjectivity %™

Testing whether a finite automaton is “**surjective is
PSPACE-complete

. Given a finite automaton 4 = (Q,2,1,0,F) , we construct

A'=(Q,Z O{#}, ') such that for all g; UF and q.OI,
we add a transition g, 10" (q; ,#) .

- Claim: A recognizes X iff A' is @& surjective.

- Testing whether a finite automaton is “*surjective is
similar to testing whether it recognize the language 2
when all the states are both initial and final.
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Decision algorithms-**equivalencea®

Testing whether two automata are % equivalent can
be done using a polynomial time algorithm.
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Welch sets

Given a finite automaton 4 =(Q,2,90)

« For any word wJX® define the left Welch set of w as the
set of states from which a path labeled by w can start.

L(w) ={qUIQ[(q,q,,0q,,...) Isa pathin 4 labeledby w}

September 1, 2006 JM'06



9

Y.
N

W
AN

Welch sets

H
NNy

Given a finite automaton 4 =(Q,2,90)

« For any word wJX® define the left Welch set of w as the
set of states from which a path labeled by w can start.

L(w) ={qUIQ[(q,q,,0q,,...) Isa pathin 4 labeledby w}

« For any word w “Z define the right Welch set of w as the
set of states in which a path labeled by w can stop.

R(w) ={qUQ]|(...,0-,,9,,9) is apathin 4 labeledby w}
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Welch sets

Example:

L(a®) ={d,,0,}
R(“b) ={0,,05}
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Welch sets

Example:

L(a®) ={d,,0,}
R(“b) ={0,,05}

September 1, 2006
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Welch sets

Example:
L(a®) ={0q,,d,} L= (1,0,1,0)
R(“b) ={q,,qs} E =(0,1,1,0)

® Given an “**injective automaton 4, if El and ﬁ1
are two left/right Welch vectors, any other Welch
vector can be obtained by applying some suitable
linear functions.
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Given two finite autonata A =(Q,%,d) and A" = (Q',%,d")

« For any word wJX“, based on the two left Welch sets L
and L’ corresponding to w on both automata, we define
the extended left Welch vector of w as:

Le(w) = (~L,L')
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Given two finite autonata A =(Q,%,d) and A" = (Q',%,d")

Extended Welch vectors

« For any word wJX“, based on the two left Welch sets L
and L’ corresponding to w on both automata, we define
the extended left Welch vector of w as:

Le(w) = (~L,L')

« For any word wl “X, based on the two right Welch sets R
and R’ corresponding to w on both automata, we define
the extended right Welch vector of w as:

Ree(w) = (R‘, ﬁ*’)
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Decision algorithms-**equivalencea®

Two “*injective automata are ““equivalent iff
for every wOZZz“ and vO“Z

—

Lee(w) - B°¢(v) =0
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Decision algorithms- “*equivalences™

Two “*jnjective automata are “~equivalent iff
for every wOZZz“ and vO“Z

—

Lee(w) - B°¢(v) =0

We would like to test the above property only on
some “representative” Welch vectors, i.e., a set of
linear independent left/right Welch vectors.
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Decision algorithms-**equivalencea®

Given two “*injective automata A and A’ with n,
respectively n’ states, if {L{%...,Ls5,, } isa well
selected set of n+n’ extended left Welch vectors,
then:
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Decision algorithms- “*equivalences™

Given two “*injective automata A and A’ with n,
respectively n’ states, if {L{%...,Ls5,, } isa well
selected set of n+n’ extended left Welch vectors,

then:

« either any other extended left Welch vector can be
obtained by applying some suitable linear functions,

September 1, 2006 JM'06



s

/

Decision algorithms- “*equivalences™

Given two “*injective automata A and A’ with n,
respectively n’ states, if {L{%...,Ls5,, } isa well
selected set of n+n’ extended left Welch vectors,

then:

« either any other extended left Welch vector can be
obtained by applying some suitable linear functions,

« or there exists uc X* and 1 <i<n-+n’ such that
hu(L$?)=(~L,0) OF hu(L§) = (0,L')-
(4 ana a' are not ““equivalent) .
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Decision algorithms- “*equivalences™

Given two “*injective automata A and A’ with n,
respectively n’ states, if {L{%...,Ls5,, } isa well
selected set of n+n’ extended left Welch vectors,

then:

« either any other extended left Welch vector can be
obtained by applying some suitable linear functions,

e orthere exists uc X* and 1 <i:<n+n’ such that
hu(L$€) = (~L,0) O hy(L§¢) = (0,L')-
(A ana A are not ““equivalent) .

Based on these n+n’vectors we compute a basis
{LSe,...,Ls°} of the vector space:
({ha(L) Ju € =, 1< i < mtn'})
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Similarly, we obtain a basis {Rs,...,Re} for
{gu(RS) |ue =", 1<i<n+n})
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Decision algorithms- “*equivalences™

Similarly, we obtain a basis {Rs,...,Re} for
{gu(RS) |ue =", 1<i<n+n})

The two ““injective automata are ““equivalent iff
forall 1<i<k and 1<j<l, L% R =0.
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The Algorithm:
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S Decision algorithms- “*equivalencea™
The Algorithm:

. Compute the sets {LS°, ... .,.Eg;n;} and { RS, . .. ,R‘;‘;n,’} ;
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'S Decision algorithms- ®equivalencea>
The Algorithm:

. Compute the sets {LS°, ... .,.Eg;n;} and { RS, . .. ,R‘;‘;n,’} ;

- Compute the basses {E‘f? . ,Ef} and {E$,... R}

September 1, 2006 JM'06



7" St
'S Decision algorithms- “*equivalenceaps
The Algorithm:

. Compute the sets {LS°, ... .,.Eg;n;} and { RS, . .. ,R‘;‘;n,’} ;
- Compute the basses {E‘f? . ,Ef} and {E$,... R}

« Test whetherforalll<i:<kand 1 <7</, Ej‘:-ﬁf‘;c = 0.
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Open Problem
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Open Problem

eDecide whether two sofic systems are equal, given
their presentation as deterministic automata.
(polynomial time complexity — N. Jonoska)
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Open Problem

eDecide whether two sofic systems are equal, given
their presentation as deterministic automata.
(polynomial time complexity — N. Jonoska)

eDecide whether two subshifts of finite type are equal,

given their presentation as “*injective automata.
(polynomial time complexity — here)
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Open Problem

eDecide whether two sofic systems are equal, given
their presentation as deterministic automata.
(polynomial time complexity — N. Jonoska)

eDecide whether two subshifts of finite type are equal,
given their presentation as “*injective automata.
(polynomial time complexity — here)

eDoes there exists a polynomial time algorithm
deciding whether two subshifts of finite type are
equal, given an arbitrary presentations for these
subshifts, i.e two (not necessarily local) finite automata?
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Thank you !




