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Local Automata

A finite automaton                 is called local if there

exist values m and k,              , such that any two 
equally labeled paths of length k go through the 
same state at time m.
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Local Automata

A finite automaton                 is called local if there

exist values m and k,              , such that any two 
equally labeled paths of length k go through the 
same state at time m.

The smallest value for k is called the synchronization delay of

),,( δΣ= QAAAA

km ≤≤0

....AAAA
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Automata

We say that a finite automaton                  is

• iff for any bi-infinite word              there

exists at most one path labeled by w;

• iff for any bi-infinite word              there

exists at least one path labeled by w;

• iff for any bi-infinite word              there

exists exactly one path labeled by w;

– Obs. We may restrict ourselves to the non-transient part of 
the automaton (all states are part of some bi-infinite path) 

ωω

),,( δΣ= QAAAA

injectiveωω ωωΣ∈    w

surjectiveωω ωωΣ∈    w

bijectiveωω ωωΣ∈    w
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Automata

Example:

An automaton is     injective iff it is local. Moreover,  
the class of      bijective automata is strictly included 
in the class of local automata.

ωω
ωω

ωω
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Decision algorithms

Given an automaton                  how efficiently can 
we decide whether:

• is      injective

• is       surjective

• is       bijective
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Decision algorithms

Given an automaton                  how efficiently can 
we decide whether:

• is      injective (quadratic time complexity)

• is       surjective (PSPACE-complete)

• is       bijective (polynomial time complexity)

– Given two      injective automata, decide whether  the two 
languages of bi-infinite words obtained as labels of bi-infinite 
paths are equal, i.e. the two automata are      equivalent.
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is a subshift iff it is closed and shift invariant.

Given a finite automaton                 , the set of bi-
infinite words obtained as labels of all bi-infinite 
paths in that automaton, is a subshift.

– Any subshift obtained in this way is called a sofic system, 
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Sofic Systems

Given     an alphabeth,       is called the full shift.

is a subshift iff it is closed and shift invariant.

Given a finite automaton                 , the set of bi-
infinite words obtained as labels of all bi-infinite 
paths in that automaton, is a subshift.

– Any subshift obtained in this way is called a sofic system, 
while the automaton generating it is called a presentation.

– Obs. A sofic system may have more than one presentation.

),,( δΣ= QAAAA
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A subshift  S is called of finite type iff all bi-infinite 
words from  S avoid a finite number of factors.
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Sofic Systems

A subshift  S is called of finite type iff all bi-infinite 
words from  S avoid a finite number of factors.

A subshift is of finite type iff it has a local presentation
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Decision algorithms

Given an automaton                  how efficiently can 
we decide whether:

• is      injective (quadratic time complexity)

• is       surjective (PSPACE-complete)

• is       bijective (polynomial time complexity)

– Given two      injective automata, decide whether  the two 
languages of bi-infinite words obtained as labels of bi-infinite 
paths are equal, i.e. the two automata are      equivalent.
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Decision algorithms

Given an automaton                  how efficiently can 
we decide whether:

• is      injective (quadratic time complexity)

• is       surjective (PSPACE-complete)

• is       bijective (polynomial time complexity)

– Given two      injective automata, decide whether  the two 
languages of bi-infinite words obtained as labels of bi-infinite 
paths are equal, i.e. the two automata are      equivalent.

– Decide whether two subshifts of finite type are equal, given 
their presentation as      injective (local) automata. 

),,( δΣ= QAAAA
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Decision algorithms- injectivityωω

Quadratic in the number of states of the automaton

(M.-P. Beal, Codage Symbolique, 1993)

• Construct the pair graph

• Test for the existence of a loop containing a vertex of the

form            , with          .),( ji qq ji qq ≠
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Decision algorithms- surjectivityωω

Testing whether a finite automaton is     surjective is

PSPACE-complete

• Given a finite automaton                            , we construct

such that for all             and          ,                        
we add a transition                     .

ωω
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– Claim:      recognizes       iff is       surjective.
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Decision algorithms- surjectivityωω

Testing whether a finite automaton is     surjective is

PSPACE-complete

• Given a finite automaton                            , we construct

such that for all             and          ,                        
we add a transition                     .

– Claim:      recognizes       iff is       surjective.

• Testing whether a finite automaton is      surjective is 

similar to testing whether it recognize the language      , 

when all the states are both initial and final.

ωω

),,,,( FIQ δΣ=AAAA
)'},{#,( δ∪Σ= QA'A'A'A' Fq f ∈ Iqs ∈

)#,(' fs qq δ∈

AAAA
*Σ A'A'A'A' ωω

ωω
*Σ
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Decision algorithms- equivalenceωω

Testing whether two automata are     equivalent can

be done using a polynomial time algorithm.

ωω



September 1, 2006 JM'06

Welch sets

Given a finite automaton 

• For any word           define the left Welch set of w as the 
set of states from which a path labeled by w can start.
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Welch sets

Given a finite automaton 

• For any word           define the left Welch set of w as the 
set of states from which a path labeled by w can start.

• For any word            define the right Welch set of w as the 
set of states in which a path labeled by w can stop.

Σ∈ ω
    w

ωΣ∈    w

),,( δΣ= QAAAA

}bylabeledinpathais,...),,(|{)( 21 wqqqQqwL AAAA∈=

}bylabeledinpathais),,(...,|{)( 12 wqqqQqwR AAAA−−∈=
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Welch sets

Example:

• Given an     injective automaton    , if       and

are two left/right Welch vectors, any other Welch

vector can be obtained by applying some suitable

linear functions. 

},{)( 31 qqaL =ω

},{)( 32 qqbR =ω

ωω AAAA
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Extended Welch vectors

Given two finite autonata                  and

• For any word           , based on the two left Welch sets L
and L’ corresponding to w on both automata, we define 
the extended left Welch vector of w as:
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Extended Welch vectors

Given two finite autonata                  and

• For any word           , based on the two left Welch sets L
and L’ corresponding to w on both automata, we define 
the extended left Welch vector of w as:

• For any word           , based on the two right Welch sets R
and R’ corresponding to w on both automata, we define 
the extended right Welch vector of w as:

ωΣ∈    w

Σ∈ ω
    w
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Decision algorithms- equivalenceωω

Two     injective automata are     equivalent iff

for every            and
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Decision algorithms- equivalenceωω

Two     injective automata are     equivalent iff

for every            and

We would like to test the above property only on 
some “representative” Welch vectors, i.e., a set of 
linear independent left/right Welch vectors.

ωω ωω

Σ∈ ω
    vωΣ∈    w



September 1, 2006 JM'06

Decision algorithms- equivalenceωω

Given two     injective automata     and      with n, 
respectively n’ states, if                        is a   well 
selected set of n+n’ extended left Welch vectors,  
then:
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Decision algorithms- equivalenceωω

Given two     injective automata     and      with n, 
respectively n’ states, if                        is a   well 
selected set of n+n’ extended left Welch vectors,  
then:

• either any other extended left Welch vector can be 
obtained by applying  some suitable linear functions,

• or there exists            and                      such that     
or                         .

(     and      are not     equivalent) .

ωω AAAA A'A'A'A'

AAAA A'A'A'A'
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Decision algorithms- equivalenceωω

Given two     injective automata     and      with n, 
respectively n’ states, if                        is a   well 
selected set of n+n’ extended left Welch vectors,  
then:

• either any other extended left Welch vector can be 
obtained by applying  some suitable linear functions,

• or there exists            and                      such that     
or                         .

(     and      are not     equivalent) .

Based on these n+n’ vectors we compute a basis                              
of the vector space:  

ωω AAAA A'A'A'A'

AAAA A'A'A'A' ωω
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Decision algorithms- equivalenceωω

Similarly, we obtain a basis for

The two     injective automata are     equivalent iff

for all              and             ,                  .

ωω ωω
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Decision algorithms- equivalenceωω

The Algorithm:

• Compute the sets                          and                   ;

• Compute the basses                       and                    ;

• Test whether for all               and               ,          .
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Open Problem

•Decide whether two sofic systems are equal, given

their presentation as deterministic automata. 

(polynomial time complexity – N. Jonoska)

•Decide whether two subshifts of finite type are equal,
given their presentation as     injective automata. 

(polynomial time complexity – here)

•Does there exists a polynomial time algorithm 

deciding whether two subshifts of finite type are

equal, given an arbitrary presentations for these

subshifts, i.e two (not necessarily local) finite automata?

ωω



Thank you !


