

On testing the equality of sofic systems

Eugen Czeizler and Jarkko Kari

University of Turku, Turku Centre for Computer Science

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$

- $w \in \Sigma^*$ is a finite word,
- $u \in {}^{\omega}\Sigma$, $v \in \Sigma^{\omega}$ and $w \in {}^{\omega}\Sigma^{\omega}$ are left, right and bi-infinite words,

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$

- $w \in \Sigma^*$ is a finite word,
- $u \in {}^{\omega}\Sigma$, $v \in \Sigma^{\omega}$ and $w \in {}^{\omega}\Sigma^{\omega}$ are left, right and bi-infinite words,
- $\bullet(q_i)_{1\leq i\leq k+1}$ is a finite path in $\,\mathcal{A}\,$ labeled by $w=(a_i)_{1\leq i\leq k}\,$ iff $q_{i+1}\!\in\delta(q_i,a_i)$,
- $(q_i)_{i \leq 0}$, $(q_i)_{i \geq 0}$ and $(q_i)_{i \in Z}$ are left, right and biinfinite paths labeled by $(a_i)_{i < 0}$, $(a_i)_{i \geq 0}$ and $(a_i)_{i \in Z}$ iff $q_{i+1} \in \delta(q_i, a_i)$.

September 1, 2006

A finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$ is called *local* if there exist values m and $k, 0 \le m \le k$, such that any two equally labeled paths of length k go through the same state at time m.

A finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$ is called *local* if there exist values m and k, $0 \le m \le k$, such that any two equally labeled paths of length k go through the same state at time m.

The smallest value for k is called the synchronization delay of \mathcal{A} .

• *^{\omega\omega} injective* iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists at most one path labeled by w;

- ${}^{\omega\omega}injective$ iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists at most one path labeled by *w*;
- ^{$\omega\omega$} surjective iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists at least one path labeled by w;

- ${}^{\omega\omega}injective$ iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists at most one path labeled by *w*;
- ^{$\omega\omega$} surjective iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists at least one path labeled by *w*;
- ${}^{\omega\omega}bijective$ iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists exactly one path labeled by w;

- ${}^{\omega\omega}injective$ iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists at most one path labeled by w;
- ^{$\omega\omega$} surjective iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists at least one path labeled by *w*;
- ${}^{\omega\omega}bijective$ iff for any bi-infinite word $w \in {}^{\omega}\Sigma^{\omega}$ there exists exactly one path labeled by w;
 - Obs. We may restrict ourselves to the non-transient part of the automaton (all states are part of some bi-infinite path)

Example:

September 1, 2006

JM'06

Example:

An automaton is ω injective iff it is local. Moreover, the class of ω bijective automata is strictly included in the class of local automata.

September 1, 2006

JM'06

- \mathcal{A} is $\omega\omega$ injective
- \mathcal{A} is $\omega \omega$ surjective
- \mathcal{A} is $\omega \omega$ bijective

- \mathcal{A} is $\omega \omega$ injective (quadratic time compexity)
- \mathcal{A} is $\omega \omega$ surjective
- \mathcal{A} is $\omega \omega$ bijective

- ${\mathcal A}$ is ${}^{\omega\omega}$ injective
- \mathcal{A} is $\omega \omega$ surjective
- \mathcal{A} is $\omega \omega$ bijective

(quadratic time compexity)

(PSPACE-complete)

- \mathcal{A} is $\omega\omega$ injective (quadratic time compexity)
- \mathcal{A} is $\omega \omega$ surjective

(PSPACE-complete)

• $\mathcal A$ is ${}^{\omega\omega}$ bijective

(polynomial time complexity)

- \mathcal{A} is $\omega\omega$ injective (quadratic time complexity)
- \mathcal{A} is $\omega \omega$ surjective (PSPACE-complete)
- \mathcal{A} is $\omega \omega$ bijective (polynomial time complexity)
 - Given two $\omega \omega$ injective automata, decide whether the two languages of bi-infinite words obtained as labels of bi-infinite paths are equal, i.e. the two automata are $\omega \omega$ equivalent.

 $S \subseteq^{\omega} \Sigma^{\omega}$ is a *subshift* iff it is <u>closed</u> and <u>shift invariant</u>.

 $S \subseteq^{\omega} \Sigma^{\omega}$ is a *subshift* iff it is <u>closed</u> and <u>shift invariant</u>.

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$, the set of biinfinite words obtained as labels of all bi-infinite paths in that automaton, is a subshift.

 $S \subseteq^{\omega} \Sigma^{\omega}$ is a *subshift* iff it is <u>closed</u> and <u>shift invariant</u>.

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$, the set of biinfinite words obtained as labels of all bi-infinite paths in that automaton, is a subshift.

> Any subshift obtained in this way is called a sofic system, while the automaton generating it is called a presentation.

 $S \subseteq^{\omega} \Sigma^{\omega}$ is a *subshift* iff it is <u>closed</u> and <u>shift invariant</u>.

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$, the set of biinfinite words obtained as labels of all bi-infinite paths in that automaton, is a subshift.

> Any subshift obtained in this way is called a sofic system, while the automaton generating it is called a presentation.

- **Obs**. A sofic system may have more than one presentation.

A subshift *S* is called of *finite type* iff all bi-infinite words from *S* avoid a finite number of factors.

A subshift *S* is called of *finite type* iff all bi-infinite words from *S* avoid a finite number of factors.

A subshift is of finite type iff it has a local presentation

- \mathcal{A} is $\omega\omega$ injective (quadratic time complexity)
- \mathcal{A} is $\omega \omega$ surjective (PSPACE-complete)
- \mathcal{A} is $\omega \omega$ bijective (polynomial time complexity)
 - Given two $\omega \omega$ injective automata, decide whether the two languages of bi-infinite words obtained as labels of bi-infinite paths are equal, i.e. the two automata are $\omega \omega$ equivalent.

- \mathcal{A} is $\omega \omega$ injective (quadratic time complexity)
- \mathcal{A} is $\omega \omega$ surjective (PSPACE-complete)
- \mathcal{A} is $\omega \omega$ bijective (polynomial time complexity)
 - Given two $\omega \omega$ injective automata, decide whether the two languages of bi-infinite words obtained as labels of bi-infinite paths are equal, i.e. the two automata are $\omega \omega$ equivalent.
 - Decide whether two subshifts of finite type are equal, given their presentation as ω injective (local) automata.

September 1, 2006

7_{TUCS} Decision algorithms- $\omega\omega$ injectivity

Quadratic in the number of states of the automaton (M.-P. Beal, Codage Symbolique, 1993)

7_{TUCS} Decision algorithms- $\omega\omega$ injectivity

Quadratic in the number of states of the automaton (M.-P. Beal, Codage Symbolique, 1993)

• Construct the pair graph

Quadratic in the number of states of the automaton (M.-P. Beal, Codage Symbolique, 1993)

Quadratic in the number of states of the automaton (M.-P. Beal, Codage Symbolique, 1993)

• Test for the existence of a loop containing a vertex of the form (q_i, q_j) , with $q_i \neq q_j$.

Testing whether a finite automaton is $\omega \omega$ surjective is PSPACE-complete

7_{TUCS} Decision algorithms- $\omega\omega$ surjectivity

Testing whether a finite automaton is $\omega \omega$ surjective is PSPACE-complete

• Given a finite automaton $\mathcal{A} = (Q, \Sigma, I, \delta, F)$, we construct $\mathcal{A}' = (Q, \Sigma \cup \{\#\}, \delta')$ such that for all $q_f \in F$ and $q_s \in I$, we add a transition $q_s \in \delta'(q_f, \#)$.

7_{TUCS} Decision algorithms- $\omega\omega$ surjectivity

Testing whether a finite automaton is ω^{ω} surjective is PSPACE-complete

• Given a finite automaton $\mathcal{A} = (Q, \Sigma, I, \delta, F)$, we construct $\mathcal{A}' = (Q, \Sigma \cup \{\#\}, \delta')$ such that for all $q_f \in F$ and $q_s \in I$, we add a transition $q_s \in \delta'(q_f, \#)$.

– Claim: $\mathcal A$ recognizes Σ^* iff $\mathcal A'$ is $\omega\omega$ surjective.

7_{TUCS} Decision algorithms- $\omega\omega$ surjectivity

Testing whether a finite automaton is ω^{ω} surjective is PSPACE-complete

• Given a finite automaton $\mathcal{A} = (Q, \Sigma, I, \delta, F)$, we construct $\mathcal{A}' = (Q, \Sigma \cup \{\#\}, \delta')$ such that for all $q_f \in F$ and $q_s \in I$, we add a transition $q_s \in \delta'(q_f, \#)$.

– Claim: \mathcal{A} recognizes Σ^* iff \mathcal{A}' is $\omega\omega$ surjective.

• Testing whether a finite automaton is $\omega \omega$ surjective is similar to testing whether it recognize the language Σ^* , when all the states are both initial and final.

Testing whether two automata are $\omega \omega$ equivalent can be done using a polynomial time algorithm.

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$

• For any word $w \in \Sigma^{\omega}$ define the *left Welch set* of *w* as the set of states from which a path labeled by *w* can start.

 $L(w) = \{q \in Q | (q, q_1, q_2, ...) \text{ is a path in } \mathcal{A} \text{ labeled by } w\}$

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta)$

• For any word $w \in \Sigma^{\omega}$ define the *left Welch set* of *w* as the set of states from which a path labeled by *w* can start.

 $L(w) = \{q \in Q | (q, q_1, q_2, ...) \text{ is a path in } \mathcal{A} \text{ labeled by } w\}$

• For any word $w \in {}^{\omega}\Sigma$ define the *right Welch set* of *w* as the set of states in which a path labeled by *w* can stop.

 $R(w) = \{q \in Q \mid (..., q_{-2}, q_{-1}, q) \text{ is a path in } \mathcal{A} \text{ labeled by } w\}$

September 1, 2006

• Given an ω injective automaton \mathcal{A} , if \vec{L}_1 and \vec{R}_1 are two left/right Welch vectors, any other Welch vector can be obtained by applying some suitable linear functions.

TUCS Extended Welch vectors

Given two finite autonata $\mathcal{A} = (Q, \Sigma, \delta)$ and $\mathcal{A}' = (Q', \Sigma, \delta')$

• For any word $w \in \Sigma^{\omega}$, based on the two left Welch sets *L* and *L'* corresponding to *w* on both automata, we define the *extended left Welch vector* of *w* as:

$$ec{L^{cc}}(w) = \left(-ec{L},ec{L'}
ight)$$

TUCS Extended Welch vectors

Given two finite autonata $\mathcal{A} = (Q, \Sigma, \delta)$ and $\mathcal{A}' = (Q', \Sigma, \delta')$

• For any word $w \in \Sigma^{\omega}$, based on the two left Welch sets *L* and *L'* corresponding to *w* on both automata, we define the *extended left Welch vector* of *w* as:

$$ec{L^{cc}}(w) = \left(-ec{L},ec{L'}
ight)$$

• For any word $w \in {}^{\omega}\Sigma$, based on the two right Welch sets R and R' corresponding to w on both automata, we define the *extended right Welch vector* of w as:

$$\vec{R^{cc}}(w) = \left(\vec{R}, \vec{R'}\right)$$

September 1, 2006

Two $\omega \omega$ injective automata are $\omega \omega$ equivalent iff for every $w \in \Sigma^{\omega}$ and $v \in {}^{\omega}\Sigma$

 $\vec{L}^{cc}(w) \cdot \vec{R}^{cc}(v) = 0$

Two $\omega \omega$ injective automata are $\omega \omega$ equivalent iff for every $w \in \Sigma^{\omega}$ and $v \in {}^{\omega}\Sigma$

 $\vec{L}^{cc}(w) \cdot \vec{R}^{cc}(v) = 0$

We would like to test the above property only on some "representative" Welch vectors, i.e., a set of linear independent left/right Welch vectors.

Given two $\omega \omega$ injective automata \mathcal{A} and \mathcal{A}' with n, respectively n' states, if $\{\vec{L}_1^{cc}, \ldots, \vec{L}_{n+n'}^{cc}\}$ is a well selected set of n+n' extended left Welch vectors, then:

Given two $\omega \omega$ injective automata \mathcal{A} and \mathcal{A}' with n, respectively n' states, if $\{\vec{L}_{1}^{cc}, \ldots, \vec{L}_{n+n'}^{cc}\}$ is a well selected set of n+n' extended left Welch vectors, then:

 <u>either</u> any other extended left Welch vector can be obtained by applying some suitable linear functions,

Given two $\omega \omega$ injective automata \mathcal{A} and \mathcal{A}' with n, respectively n' states, if $\{\vec{L}_{1}^{cc}, \ldots, \vec{L}_{n+n'}^{cc}\}$ is a well selected set of n+n' extended left Welch vectors, then:

- <u>either</u> any other extended left Welch vector can be obtained by applying some suitable linear functions,
- <u>or</u> there exists $u \in \Sigma^*$ and $1 \le i \le n+n'$ such that $h_u(\vec{L}_i^{cc}) = (-\vec{L}, \vec{0})$ or $h_u(\vec{L}_i^{cc}) = (\vec{0}, \vec{L}')$.

Given two $\omega \omega$ injective automata \mathcal{A} and \mathcal{A}' with n, respectively n' states, if $\{\vec{L}_{1}^{cc}, \ldots, \vec{L}_{n+n'}^{cc}\}$ is a well selected set of n+n' extended left Welch vectors, then:

- <u>either</u> any other extended left Welch vector can be obtained by applying some suitable linear functions,
- <u>or</u> there exists $u \in \Sigma^*$ and $1 \le i \le n+n'$ such that $h_u(\vec{L}_i^{cc}) = (-\vec{L}, \vec{0})$ or $h_u(\vec{L}_i^{cc}) = (\vec{0}, \vec{L}')$.

Based on these n+n' vectors we compute a basis $\{\vec{L}_1^{cc}, \ldots, \vec{L}_k^{cc}\}$ of the vector space: $\langle \{h_u(\vec{L}_i^{cc}) \mid u \in \Sigma^*, \ 1 \le i \le n+n'\} \rangle$

September 1, 2006

Similarly, we obtain a basis $\{\vec{R}_1^{cc}, \dots, \vec{R}_l^{cc}\}$ for $\langle \{g_u(\vec{R}_i^{cc}) \mid u \in \Sigma^*, \ 1 \le i \le n+n'\} \rangle$

Similarly, we obtain a basis $\{\vec{R}_1^{cc}, \dots, \vec{R}_l^{cc}\}$ for $\langle \{g_u(\vec{R}_i^{cc}) \mid u \in \Sigma^*, \ 1 \leq i \leq n+n'\} \rangle$

The two $\omega injective automata are <math>\omega equivalent$ iff for all $1 \le i \le k$ and $1 \le j \le l$, $\vec{L}_i^{cc} \cdot \vec{R}_j^{cc} = 0$.

The Algorithm:

The Algorithm:

• Compute the sets $\{\vec{L}_1^{cc},\ldots,\vec{L}_{n+n'}^{cc}\}$ and $\{\vec{R}_1^{cc},\ldots,\vec{R}_{n+n'}^{cc}\}$;

The Algorithm:

- Compute the sets $\{\vec{L}_1^{cc},\ldots,\vec{L}_{n+n'}^{cc}\}$ and $\{\vec{R}_1^{cc},\ldots,\vec{R}_{n+n'}^{cc}\}$;
- Compute the basses $\{\vec{L}_1^{cc}, \ldots, \vec{L}_k^{cc}\}$ and $\{\vec{R}_1^{cc}, \ldots, \vec{R}_l^{cc}\}$;

The Algorithm:

- Compute the sets $\{\vec{L}_1^{cc},\ldots,\vec{L}_{n+n'}^{cc}\}$ and $\{\vec{R}_1^{cc},\ldots,\vec{R}_{n+n'}^{cc}\}$;
- Compute the basses $\{\vec{L}_1^{cc}, \ldots, \vec{L}_k^{cc}\}$ and $\{\vec{R}_1^{cc}, \ldots, \vec{R}_l^{cc}\}$;
- Test whether for all $1 \le i \le k$ and $1 \le j \le l$, $\vec{L}_i^{cc} \cdot \vec{R}_j^{cc} = 0$.

 Decide whether two sofic systems are equal, given their presentation as deterministic automata.
 (polynomial time complexity – N. Jonoska)

- Decide whether two sofic systems are equal, given their presentation as deterministic automata.
 (polynomial time complexity – N. Jonoska)
- Decide whether two subshifts of finite type are equal, given their presentation as ω^{ω} injective automata. (polynomial time complexity here)

- Decide whether two sofic systems are equal, given their presentation as deterministic automata.
 (polynomial time complexity – N. Jonoska)
- Decide whether two subshifts of finite type are equal, given their presentation as ω injective automata. (polynomial time complexity here)
- Does there exists a polynomial time algorithm deciding whether two subshifts of finite type are equal, given an arbitrary presentations for these subshifts, i.e two (not necessarily local) finite automata?

Thank you !