Structural Properties of Bounded Languages with Respect to Multiplication by a Constant

Emilie Charlier, Michel Rigo

Department of Mathematics University of Liège

Journées Montoises d'Informatique Théorique
à Rennes, 2006

1) Abstract numeration systems
2) Main question
3) First results about S-recognizability
4) Bounded languages
5) B_{ℓ}-representation of an integer
6) Multiplication by $\lambda=\beta^{\ell}$
7) Abstract numeration systems

Definition. [P. Lecomte, M. Rigo, 2001] An abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is a regular language over a totally ordered alphabet $(\Sigma,<)$.

Enumerating the words of L with respect to the genealogical ordering induced by $<$ gives a one-to-one correspondence

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N}
$$

Examples

1) $a^{*} \quad$| n | 0 | 1 | 2 | 3 | 4 | \cdots |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r e p(n)$ | ε | a | $a a$ | $a a a$ | aaaa | \cdots |
2) $\{a, b\}^{*}, a<b$ | n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | \cdots |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{rep}(n)$ | ε | a | b | $a a$ | $a b$ | $b a$ | $b b$ | $a a a$ | \cdots |
3) $a^{*} b^{*}, a<b$

$$
\begin{array}{r|cccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\hline r e p(n) & \varepsilon & a & b & a a & a b & b b & a a a & \cdots
\end{array}
$$

Remark. This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

$$
L=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*} \text { or } L=\{\varepsilon\} \cup 1\{0,01\}^{*}
$$

Definition. A set $X \subseteq \mathbb{N}$ is S-recognizable if $\operatorname{rep}_{S}(X) \subseteq \Sigma^{*}$ is a regular language (accepted by a DFA).
2) Main question

If $S=(L, \Sigma,<)$ is an abstract numeration system, can we find some necessary and sufficient condition on $\lambda \in \mathbb{N}$ such that for any S recognizable set X, the set λX is still S-recognizable ?

$$
X S \text {-rec } \quad \xrightarrow{?} \quad \lambda X S \text {-rec }
$$

3) First results about S-recognizability

Theorem 1. Let $S=(L, \Sigma,<)$ be an abstract numeration system. Any arithmetic progression is S-recognizable.

Definition. We denote by $\mathbf{u}_{L}(n)$ the number of words of length n belonging to L.

Theorem 2. [Polynomial case] Let $L \subseteq \Sigma^{*}$ be a regular language such that $\mathbf{u}_{L}(n) \in \Theta\left(n^{k}\right), k \in \mathbb{N}$ and $S=(L, \Sigma,<)$. Preservation of the S-recognizability after multiplication by λ holds only if $\lambda=\beta^{k+1}$ for some $\beta \in \mathbb{N}$.

Definition. A language L is slender if $\mathbf{u}_{L}(n) \in O(1)$.

Theorem 3. [Slender case] Let $L \subset \Sigma^{*}$ be a slender regular language and $S=(L, \Sigma,<)$. A set $X \subseteq \mathbb{N}$ is S-recognizable if and only if X is a finite union of arithmetic progressions.

Corollary. Let S be a numeration system built on a slender language. If $X \subseteq \mathbb{N}$ is S-recognizable then λX is S-recognizable for all $\lambda \in \mathbb{N}$.

Theorem 4. Let $\beta>0$. For the abstract numeration system

$$
S=\left(a^{*} b^{*},\{a<b\}\right)
$$

the multiplication by β^{2} preserves S-recognizability if and only if β is an odd integer.
4) Bounded languages, notation

We denote by $\mathcal{B}_{\ell}=a_{1}^{*} \cdots a_{\ell}^{*}$ the bounded language over the totally ordered alphabet $\Sigma_{\ell}=\left\{a_{1}<\ldots<a_{\ell}\right\}$ of size $\ell \geq 1$.

We consider abstract numeration systems of the form ($\mathcal{B}_{\ell}, \Sigma_{\ell}$) and we denote by $\operatorname{rep}_{\ell}$ and val_{ℓ} the corresponding bijections.

A set $X \subseteq \mathbb{N}$ is said to be \mathcal{B}_{ℓ}-recognizable if $\operatorname{rep}_{\ell}(X)$ is a regular language over the alphabet Σ_{ℓ}.

In this context, multiplication by a constant λ can be viewed as a transformation

$$
f_{\lambda}: \mathcal{B}_{\ell} \rightarrow \mathcal{B}_{\ell}
$$

The question becomes then :

Can we determine some necessary and sufficient condition under which this transformation preserves regular subsets of \mathcal{B}_{ℓ} ?

Example

Let $\ell=2, \Sigma_{2}=\{a, b\}$ and $\lambda=25$.

Thus multiplication by $\lambda=25$ induces a mapping f_{λ} onto \mathcal{B}_{2} such that for $w, w^{\prime} \in \mathcal{B}_{2}, f_{\lambda}(w)=w^{\prime}$ if and only if $\operatorname{val}_{2}\left(w^{\prime}\right)=25 \operatorname{val}_{2}(w)$.
5) B_{ℓ}-representation of an integer

We set

$$
\mathbf{u}_{\ell}(n):=\mathbf{u}_{\mathcal{B}_{\ell}}(n)=\#\left(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{n}\right)
$$

and

$$
\mathbf{v}_{\ell}(n):=\#\left(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{\leq n}\right)=\sum_{i=0}^{n} \mathbf{u}_{\ell}(i)
$$

Lemma 1. For all $\ell \geq 1$ and $n \geq 0$, we have

$$
\begin{equation*}
\mathbf{u}_{\ell+1}(n)=\mathbf{v}_{\ell}(n) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{u}_{\ell}(n)=\binom{n+\ell-1}{\ell-1} \tag{2}
\end{equation*}
$$

Lemma 2. Let $S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)$. We have

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)=\sum_{i=1}^{\ell}\binom{n_{i}+\cdots+n_{\ell}+\ell-i}{\ell-i+1} .
$$

Corollary. [Katona, 1966] Let $\ell \in \mathbb{N} \backslash\{0\}$. Any integer n can be uniquely written as

$$
\begin{equation*}
n=\binom{z_{\ell}}{\ell}+\binom{z_{\ell-1}}{\ell-1}+\cdots+\binom{z_{1}}{1} \tag{3}
\end{equation*}
$$

with $z_{\ell}>z_{\ell-1}>\cdots>z_{1} \geq 0$.

Example

Consider the words of length 3 in the language $a^{*} b^{*} c^{*}$,

$$
a a a<a a b<a a c<a b b<a b c<a c c<b b b<b b c<b c c<c c c .
$$

We have $\operatorname{val}_{3}(a a a)=\binom{5}{3}=10$ and val $_{3}(a c c)=15$.
If we apply the erasing morphism $\varphi:\{a, b, c\} \rightarrow\{a, b, c\}^{*}$ defined by

$$
\varphi(a)=\varepsilon, \varphi(b)=b, \varphi(c)=c
$$

on the words of length 3 , we get

$$
\varepsilon<b<c<b b<b c<c c<b b b<b b c<b c c<c c c .
$$

So we have val $_{3}(a c c)=\operatorname{val}_{3}(a a a)+\mathrm{val}_{2}(c c)$ where val_{2} is considered as a map defined on the language $b^{*} c^{*}$.

Algorithm computing $\operatorname{rep}_{\ell}(n)$.
Let n be an integer and l be a positive integer.

```
For i=l,l-1,...,1 do
if n>0,
find t such that (\begin{array}{l}{\textrm{t}}\\{\textrm{i}}\end{array})\leqn<(\begin{array}{c}{\textrm{t}+1}\\{\textrm{i}}\end{array})
z(i)\leftarrowt
n}\leftarrow\textrm{n}-(\begin{array}{l}{\textrm{t}}\\{\textrm{i}}\end{array}
otherwise, z(i)\leftarrowi-1
```

Consider now the triangular system having $\alpha_{1}, \ldots, \alpha_{\ell}$ as unknowns

$$
\alpha_{i}+\cdots+\alpha_{\ell}=\mathrm{z}(\ell-i+1)-\ell+i, \quad i=1, \ldots, \ell
$$

One has $\operatorname{rep}_{\ell}(\mathrm{n})=a_{1}^{\alpha_{1}} \cdots a_{\ell}^{\alpha_{\ell}}$.

Example

For $\ell=3$, one gets for instance

$$
12345678901234567890=\binom{4199737}{3}+\binom{3803913}{2}+\binom{1580642}{1}
$$

and solving the system

$$
\begin{gathered}
\left\{\begin{aligned}
n_{1}+n_{2}+n_{3} & =4199737-2 \\
n_{2}+n_{3} & =3803913-1 \\
n_{3} & =1580642
\end{aligned}\right. \\
\Leftrightarrow\left(n_{1}, n_{2}, n_{3}\right)=(395823,2223270,1580642)
\end{gathered}
$$

we have

$$
\operatorname{rep}_{3}(12345678901234567890)=a^{395823} b^{2223270} c^{1580642}
$$

Remark. In particular, we have $\mathbf{u}_{\mathcal{B}_{\ell}}(n) \in \Theta\left(n^{\ell-1}\right)$.

So we have to focus only on multiplicators of the kind

$$
\lambda=\beta^{\ell}
$$

6) Multiplication by $\lambda=\beta^{\ell}$

Theorem. For the abstract numeration system

$$
S=\left(a^{*} b^{*} c^{*},\{a<b<c\}\right)
$$

if $\beta \in \mathbb{N} \backslash\{0,1\}$ is such that $\beta \not \equiv \pm 1(\bmod 6)$ then the multiplication by β^{3} does not preserve the S-recognizability.

For instance, if $\beta \equiv 2(\bmod 6)$, for n large enough, we have

$$
\operatorname{rep}_{3}\left[(6 k+2)^{3} \operatorname{val}_{3}\left(a^{n}\right)\right]=a^{r} b^{s+(3 k+1) n} c^{t+(3 k+1) n}
$$

where the constants r, s, t are given by

$$
r=4 k+6 k^{2}, \quad s=5 k+11 k^{2}+24 k^{3}+18 k^{4}, \quad t=-3 k-17 k^{2}-24 k^{3}-18 k^{4}
$$

Conjecture. Multiplication by β^{ℓ} preserves S-recognizability for the abstract numeration system

$$
S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)
$$

built on the bounded language \mathcal{B}_{ℓ} over ℓ letters if and only if

$$
\beta=\prod_{i=1}^{k} p_{i}^{\theta_{i}}
$$

where p_{1}, \ldots, p_{k} are prime numbers strictly greater than ℓ.

Lemma 1. For $n \in \mathbb{N}$ large enough, we have

$$
\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta\left|\operatorname{rep}_{\ell}(n)\right|+\frac{(\beta-1)(\ell-1)}{2}+i
$$

with $i \in\{-1,0, \ldots, \beta-1\}$.

Definition. For all $i \in\{-1,0, \ldots, \beta-1\}$ and $k \in \mathbb{N}$ large enough, we define

$$
\mathcal{R}_{i, k}:=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{\ell}(n)\right|=k \text { and }\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta k+\frac{(\beta-1)(\ell-1)}{2}+i\right\}
$$

We assume that β satisfies the condition of the Conjecture.

Proposition. Let $i \in\{0, \ldots, \beta-1\}$. There exists a constant $\mathbf{L} \geq 0$ (depending only on ℓ and β) such that for all $k \geq \mathbf{L}$, if $m=\min \mathcal{R}_{i, k}$ and $n=\min \mathcal{R}_{i, k+\beta^{\ell-1}}$ then

$$
\forall t \in\{2, \ldots, \ell\}:\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} m\right)\right|_{a_{t}}=\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right| a_{t}
$$

Furthermore, $\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} m\right)\right|_{a_{1}}+\beta^{\ell}=\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|_{a_{1}}$.

