Structural Properties of Bounded Languages with Respect to Multiplication by a Constant

Emilie Charlier, Michel Rigo

Department of Mathematics University of Liège

Journées Montoises d'Informatique Théorique à Rennes, 2006

- 1) Abstract numeration systems
- 2) Main question
- 3) First results about S-recognizability
- 4) Bounded languages
- 5) B_{ℓ} -representation of an integer
- 6) Multiplication by $\lambda = \beta^{\ell}$

1) Abstract numeration systems

Definition. [P. Lecomte, M. Rigo, 2001] An abstract numeration system is a triple $S = (L, \Sigma, <)$ where L is a regular language over a totally ordered alphabet $(\Sigma, <)$.

Enumerating the words of L with respect to the genealogical ordering induced by < gives a one-to-one correspondence

$$\operatorname{rep}_S: \mathbb{N} \to L \qquad \operatorname{val}_S = \operatorname{rep}_S^{-1}: L \to \mathbb{N}.$$

Examples

1)
$$a^*$$
 $n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid \cdots$ $rep(n) \mid \varepsilon \mid a \mid aaa \mid aaa \mid aaaa \mid \cdots$

2)
$$\{a,b\}^*$$
, $a < b$ $\frac{n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | \cdots}{\text{rep}(n) | \varepsilon | a | b | aa | ab | ba | bb | aaa | \cdots}$

3)
$$a^*b^*$$
, $a < b$ $n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid \cdots$ $rep(n) \mid \varepsilon \mid a \mid b \mid aa \mid ab \mid bb \mid aaa \mid \cdots$

Remark. This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

$$L = \{\varepsilon\} \cup \{1, \dots, k-1\} \{0, \dots, k-1\}^* \text{ or } L = \{\varepsilon\} \cup \{0, 01\}^*$$

Definition. A set $X \subseteq \mathbb{N}$ is S-recognizable if $\operatorname{rep}_S(X) \subseteq \Sigma^*$ is a regular language (accepted by a DFA).

2) Main question

If $S = (L, \Sigma, <)$ is an abstract numeration system, can we find some necessary and sufficient condition on $\lambda \in \mathbb{N}$ such that for any S-recognizable set X, the set λX is still S-recognizable?

$$X S$$
-rec $\xrightarrow{?} \lambda X S$ -rec

3) First results about S-recognizability

Theorem 1. Let $S = (L, \Sigma, <)$ be an abstract numeration system. Any arithmetic progression is S-recognizable.

Definition. We denote by $\mathbf{u}_L(n)$ the number of words of length n belonging to L.

Theorem 2. [Polynomial case] Let $L \subseteq \Sigma^*$ be a regular language such that $\mathbf{u}_L(n) \in \Theta(n^k)$, $k \in \mathbb{N}$ and $S = (L, \Sigma, <)$. Preservation of the S-recognizability after multiplication by λ holds only if $\lambda = \beta^{k+1}$ for some $\beta \in \mathbb{N}$.

Definition. A language L is slender if $\mathbf{u}_L(n) \in O(1)$.

Theorem 3. [Slender case] Let $L \subset \Sigma^*$ be a slender regular language and $S = (L, \Sigma, <)$. A set $X \subseteq \mathbb{N}$ is S-recognizable if and only if X is a finite union of arithmetic progressions.

Corollary. Let S be a numeration system built on a slender language. If $X \subseteq \mathbb{N}$ is S-recognizable then λX is S-recognizable for all $\lambda \in \mathbb{N}$.

Theorem 4. Let $\beta > 0$. For the abstract numeration system

$$S = (a^*b^*, \{a < b\}),$$

the multiplication by β^2 preserves S-recognizability if and only if β is an odd integer.

4) Bounded languages, notation

We denote by $\mathcal{B}_{\ell} = a_1^* \cdots a_{\ell}^*$ the bounded language over the totally ordered alphabet $\Sigma_{\ell} = \{a_1 < \ldots < a_{\ell}\}$ of size $\ell \geq 1$.

We consider abstract numeration systems of the form $(\mathcal{B}_{\ell}, \Sigma_{\ell})$ and we denote by rep_{ℓ} and val_{ℓ} the corresponding bijections.

A set $X \subseteq \mathbb{N}$ is said to be \mathcal{B}_{ℓ} -recognizable if $\operatorname{rep}_{\ell}(X)$ is a regular language over the alphabet Σ_{ℓ} .

In this context, multiplication by a constant λ can be viewed as a transformation

$$f_{\lambda}: \mathcal{B}_{\ell} \to \mathcal{B}_{\ell}.$$

The question becomes then:

Can we determine some necessary and sufficient condition under which this transformation preserves regular subsets of \mathcal{B}_{ℓ} ?

Example

Let $\ell = 2$, $\Sigma_2 = \{a, b\}$ and $\lambda = 25$.

Thus multiplication by $\lambda=25$ induces a mapping f_{λ} onto \mathcal{B}_2 such that for $w,w'\in\mathcal{B}_2$, $f_{\lambda}(w)=w'$ if and only if $\operatorname{val}_2(w')=25\operatorname{val}_2(w)$.

5) B_{ℓ} -representation of an integer

We set

$$\mathbf{u}_{\ell}(n) := \mathbf{u}_{\mathcal{B}_{\ell}}(n) = \#(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{n})$$

and

$$\mathbf{v}_{\ell}(n) := \#(\mathcal{B}_{\ell} \cap \mathbf{\Sigma}_{\ell}^{\leq n}) = \sum_{i=0}^{n} \mathbf{u}_{\ell}(i).$$

Lemma 1. For all $\ell \geq 1$ and $n \geq 0$, we have

$$\mathbf{u}_{\ell+1}(n) = \mathbf{v}_{\ell}(n) \tag{1}$$

and

$$\mathbf{u}_{\ell}(n) = {n+\ell-1 \choose \ell-1}. \tag{2}$$

Lemma 2. Let $S = (a_1^* \cdots a_{\ell}^*, \{a_1 < \cdots < a_{\ell}\})$. We have

$$\operatorname{val}_{\ell}(a_1^{n_1}\cdots a_{\ell}^{n_{\ell}}) = \sum_{i=1}^{\ell} {n_i + \cdots + n_{\ell} + \ell - i \choose \ell - i + 1}.$$

Corollary. [Katona, 1966] Let $\ell \in \mathbb{N} \setminus \{0\}$. Any integer n can be uniquely written as

$$n = {z_{\ell} \choose \ell} + {z_{\ell-1} \choose \ell-1} + \dots + {z_1 \choose 1}$$
 (3)

with $z_{\ell} > z_{\ell-1} > \cdots > z_1 \ge 0$.

Example

Consider the words of length 3 in the language $a^*b^*c^*$,

$$aaa < aab < aac < abb < acc < bbb < bbc < bcc < ccc$$
.

We have $val_3(aaa) = {5 \choose 3} = 10$ and $val_3(acc) = 15$.

If we apply the erasing morphism $\varphi: \{a,b,c\} \to \{a,b,c\}^*$ defined by

$$\varphi(a) = \varepsilon, \varphi(b) = b, \varphi(c) = c$$

on the words of length 3, we get

$$\varepsilon < b < c < bb < bc < cc < bbb < bbc < bcc < ccc.$$

So we have $val_3(acc) = val_3(aaa) + val_2(cc)$ where val_2 is considered as a map defined on the language b^*c^* .

Algorithm computing $rep_{\ell}(n)$.

Let n be an integer and 1 be a positive integer.

For i=1,1-1,...,1 do if n>0, find t such that
$$\binom{t}{i} \leq n < \binom{t+1}{i}$$
 $z(i) \leftarrow t$ $n \leftarrow n - \binom{t}{i}$ otherwise, $z(i) \leftarrow i-1$

Consider now the triangular system having $\alpha_1, \ldots, \alpha_\ell$ as unknowns

$$\alpha_i + \cdots + \alpha_\ell = \mathsf{z}(\ell - i + 1) - \ell + i, \quad i = 1, \dots, \ell.$$

One has $rep_{\ell}(n) = a_1^{\alpha_1} \cdots a_{\ell}^{\alpha_{\ell}}$.

Example

For $\ell = 3$, one gets for instance

$$12345678901234567890 = {4199737 \choose 3} + {3803913 \choose 2} + {1580642 \choose 1}$$
 and solving the system

$$\begin{cases} n_1 + n_2 + n_3 &= 4199737 - 2 \\ n_2 + n_3 &= 3803913 - 1 \\ n_3 &= 1580642 \end{cases}$$

$$\Leftrightarrow (n_1, n_2, n_3) = (395823, 2223270, 1580642),$$

we have

$$rep_3(12345678901234567890) = a^{395823}b^{2223270}c^{1580642}.$$

Remark. In particular, we have $\mathbf{u}_{\mathcal{B}_{\ell}}(n) \in \Theta(n^{\ell-1})$.

So we have to focus only on multiplicators of the kind

$$\lambda = \beta^{\ell}.$$

6) Multiplication by $\lambda = \beta^{\ell}$

Theorem. For the abstract numeration system

$$S = (a^*b^*c^*, \{a < b < c\}),$$

if $\beta \in \mathbb{N} \setminus \{0,1\}$ is such that $\beta \not\equiv \pm 1 \pmod{6}$ then the multiplication by β^3 does not preserve the S-recognizability.

For instance, if $\beta \equiv 2 \pmod{6}$, for n large enough, we have

$$\operatorname{rep}_{3}\left[(6k+2)^{3}\operatorname{val}_{3}(a^{n})\right] = a^{r}b^{s+(3k+1)n}c^{t+(3k+1)n}$$

where the constants r, s, t are given by

$$r = 4k + 6k^2$$
, $s = 5k + 11k^2 + 24k^3 + 18k^4$, $t = -3k - 17k^2 - 24k^3 - 18k^4$.

Conjecture. Multiplication by β^ℓ preserves S-recognizability for the abstract numeration system

$$S = (a_1^* \cdots a_{\ell}^*, \{a_1 < \cdots < a_{\ell}\})$$

built on the bounded language \mathcal{B}_ℓ over ℓ letters if and only if

$$\beta = \prod_{i=1}^k p_i^{\theta_i}$$

where p_1, \ldots, p_k are prime numbers strictly greater than ℓ .

Lemma 1. For $n \in \mathbb{N}$ large enough, we have

$$|\text{rep}_{\ell}(\beta^{\ell}n)| = \beta |\text{rep}_{\ell}(n)| + \frac{(\beta - 1)(\ell - 1)}{2} + i$$

with $i \in \{-1, 0, \dots, \beta - 1\}$.

Definition. For all $i \in \{-1, 0, ..., \beta - 1\}$ and $k \in \mathbb{N}$ large enough, we define

$$\mathcal{R}_{i,k} := \left\{ n \in \mathbb{N} : |\text{rep}_{\ell}(n)| = k \text{ and } |\text{rep}_{\ell}(\beta^{\ell}n)| = \beta k + \frac{(\beta - 1)(\ell - 1)}{2} + i \right\}.$$

We assume that β satisfies the condition of the Conjecture.

Proposition. Let $i\in\{0,\ldots,\beta-1\}$. There exists a constant $\mathbf{L}\geq 0$ (depending only on ℓ and β) such that for all $k\geq \mathbf{L}$, if $m=\min\mathcal{R}_{i,k}$ and $n=\min\mathcal{R}_{i,k+\beta\ell-1}$ then

$$\forall t \in \{2, \dots, \ell\} : |\operatorname{rep}_{\ell}(\beta^{\ell} m)|_{a_t} = |\operatorname{rep}_{\ell}(\beta^{\ell} n)|_{a_t}.$$

Furthermore, $|\operatorname{rep}_{\ell}(\beta^{\ell}m)|_{a_1} + \beta^{\ell} = |\operatorname{rep}_{\ell}(\beta^{\ell}n)|_{a_1}$.