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as well as in applications, such as
string matching algorithms,
text compression,
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w-words (right infinite words)

Let N ={0,1,2,...}.

Any total map z:N— A

is called an w-word.

Notation.

Let x;=x(i) then z=wzxy...2;...
A“ — the set of all w-words in alphabet A

A>® =AU A¥
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& Metric

We introduce in A% the so called prefix metric d as follows.
o Let x,y€ A>.

Then  d(x,y) = inf{ 271%/ | u € Pref(z) N Pref(y)}.

o Here |u| — the lenght of word w;

o Pref(x) — the set of all prefixes of .
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¢ A sequence of words  vg,v1,...,Un,...
e is called a bi-ideal sequence

if Vi Vi1 € v; A% ;.

& The sequence vg, v1,...,Vn,. ..
e is a bi-ideal sequence
if and only if
e there exists a sequence of words — wg, U1, ..., Uy,...

e such that
Vo = U,

Vi+1 = UiUj10;.
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¢ A word z € A% is called a bi-ideal
o if there exists a bi-ideal sequence

e such that lim v; = z.

11— 00

Vo, U1y .-
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¢ A word z € A% is called a bi-ideal

o if there exists a bi-ideal sequence  vg,vy,...

y Uns
e such that lim v; = z.
—00
¢ Let wg,uq,...,upn,... be asequence of words such that
Vo = Uo,
Vi+1 = UiUj410;.

e Then we say that the bi-ideal x is generated by the sequence

Uy, Uy e ey Upy .-



¢ Let

T e AY

then

IL’[’L,] + 1) = TiTig1.--Tj
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u € F(x) is called recurrent

{i]u==z[i,|u]) } has not upper bound.
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39
¢ Let €AY then «z[i,j+1)=xzip1...25

e A factor w € F(x) is called recurrent

if the set  {4|u=x[i,|ul) } has not upper bound.

e A word x¢€ A¥ is called recurrent

if any of its factors is recurrent.

& A word is recurrent if and only if it is a bi-ideal.
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Let ve€ At and v = ), v"*! = 0"y then
We say that =z € A“ is ultimately periodic
if x=wuv” forsome wu€ A*,veAt.

If w=X theword % iscalled
periodic of period p = |v].

Let x € A“ be an ultimately periodic.

If =x isa bi-ideal then x is periodic.

v

w
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if there exists an integer &k such that
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¢ It is said a factor u occurs syndetically in
if there exists an integer &k such that
in any factor of =z of length &
there is at least one occurrence of u, namely,
Jk[veF(@) Alvj=k = ueF(v)]

e A word =z is called uniformly recurrent

when all its factors occur syndetically in x.

T € AY
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¢ It is said a factor u occurs syndetically in
if there exists an integer &k such that
in any factor of =z of length &
there is at least one occurrence of u, namely,
Jk[veF(@) Alvj=k = ueF(v)]

e A word =z is called uniformly recurrent

when all its factors occur syndetically in x.

& If x€ AY is uniformly recurrent then =z

T € AY

is a bi-ideal.
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¢ Let

Ug, Uty - - -

x be a bi-ideal generated by the sequence

T
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¢ Let =z Dbe a bi-ideal generated by the sequence

Uy ULy oo vy Upy .-

e The bi-ideal z is called finitely generated if

ImViVj (i = j (modm) = u; = u;).
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Uy ULy oo vy Upy .-

e The bi-ideal z is called finitely generated if
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¢ Let =z Dbe a bi-ideal generated by the sequence
UQ, ULy e+ oy Upyy - -

e The bi-ideal z is called finitely generated if
ImViVj (i = j (modm) = u; = u;).
We say in this situation m—tuple (ug, u1,. .., Um—1)
generates the bi-ideal z.

& If xe€ A¥ s finitely generated

then « is uniformly recurrent.
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¢ The factor v is called a suffix of w € A*
if w=wv forany we A*.
Suff (w) — the set of all suffixes of w.
& It U, Pref(w) or U, Suff(u)
has at least two words with one and the same length

then a bi-ideal generated by  (uo,u1,. .., Um—1)

is not ultimately periodic.
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with one and the same probability  p(a) = I—l‘
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& Let A be an alphabet and every letter a € A is chosen
with one and the same probability  p(a) = I—l‘
Let p Dbe a probability that a bi-ideal generated by

(ug,u1,...,Uy) is ultimately periodic.

If Vilu;|>mn then p<‘A|mn.

e Let A={0,1} and m=n=10

then probability p < 100"



o Let

x be a bi-ideal generated by

(0,010)
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e Let x be a bi-ideal generated by  (0,010) then

Vo
V1
V2

U3

0,

00100,

00100000100,
0010000010001000100000100,

lim v; .
1—00
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e Let x be a bi-ideal generated by  (0,010) then

Vo
V1
V2

U3

0,
= 00100,
= 00100000100,
= 0010000010001000100000100,

= lim v;.
1—00

e This bi-ideal is not periodic neverthelesss

Pref{0,010} {0,01,010},
Suff{0,010} = {0,10,010},
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e Let x be a bi-ideal generated by  (0,010) then

Vo = 0,

vp = 00100,

ve = 00100000100,

vs = 0010000010001000100000100,
x = lim v;.

e This bi-ideal is not periodic neverthelesss

Pref{0,010} {0,01,010},
Suff{0,010} = {0,10,010},

namely, these sets contain the words with different size only.



e Let we AT and w*= J {w"}.
n=0
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n=0
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is periodic
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e Let we AT and w*= J {w"}.
n=0

& The bi-ideal generated by the tuple
is periodic
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e Let we AT and w*= J {w"}.
n=0

& The bi-ideal generated by the tuple  (ug,u1,
is periodic
if and only if then

Juwvie 0,m—1 u; € w*.

...,um,l)
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x be a bi-ideal generated by the sequence

T
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¢ Let =z Dbe a bi-ideal generated by the sequence
UQy ULy e vy Upy---
e The bi-ideal z is called bounded if

Vi Jug| < L.
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¢ Let =z Dbe a bi-ideal generated by the sequence
UQy ULy e ooy Upyy - -«

e The bi-ideal z is called bounded if
AV |u;| < 1.

& If zc A is bounded

then « is uniformly recurrent.
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o Let

x  be a bi-ideal generated by sequence (u;)
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o Let

x be a bi-ideal generated by sequence (u;), where
ug = 0,
u = 1,
Vi>1 wu; = 00100.
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o Let

Then

x be a bi-ideal generated by sequence (u;), where

ug = 0,
u; = 1,
Vi>1 wuw; = 00100.
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o Let

Then

x be a bi-ideal generated by sequence (u;), where

Vo
U1
V2

U3

Uy = 0,

u; = 1,
Vi>1 u; = 00100.
0,
010,

010 00100 010,
01000100010 00100 01000100010,

lim v; .
1—00
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e Thus z is the bounded bi-ideal
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e Thus x is the bounded bi-ideal,

e besides z = (0100)~.

This demonstrates that straightforward generalization of
Theorem

& The bi-ideal generated by the tuple  (ug,u1,...,Um—1)

is periodic if and only if then

Jwvie 0,m—1 u; € w*.
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e Thus x is the bounded bi-ideal,

e besides z = (0100)~.

This demonstrates that straightforward generalization of
Theorem

& The bi-ideal generated by the tuple  (ug,u1,...,Um—1)
is periodic if and only if then

Jwvi € 0,m — 1 u; € w*

for bounded bi-ideals is not valid.
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& Let

Ug, Uty - - -

x be a bi-ideal generated by the sequence

T

A bi-ideal z is periodic
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& Let x be a bi-ideal generated by the sequence
UQy ULy e vy Upy---
A bi-ideal z is periodic

if and only if
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& Let x be a bi-ideal generated by the sequence
UQy ULy e vy Upy---
A bi-ideal z is periodic

if and only if

In € NIuIv (vpu € v A Vi € Zy upy; € uv™).
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Thank You

very much!
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