11th Mons Days of Theoretical Computer Science 30th August – 2nd September, 2006, Rennes

Jānis Buls
University of Latvia

FROM BI-IDEALS TO PERIODICITY

 $a_0a_1\ldots a_n\ldots$

$$a_0a_1\ldots a_n\ldots$$

$$a_0a_1\ldots a_n\ldots$$

are fundamental objects in

• word combinatorics

$$a_0a_1\ldots a_n\ldots$$

are fundamental objects in

as well as in applications

• word combinatorics

$$a_0a_1\ldots a_n\ldots$$

- word combinatorics
 as well as in applications, such as
- string matching algorithms

$$a_0a_1\ldots a_n\ldots$$

- word combinatorics
 as well as in applications, such as
- string matching algorithms,
- text compression

$$a_0a_1\ldots a_n\ldots$$

- word combinatorics
 as well as in applications, such as
- string matching algorithms,
- text compression,
- molecular biology.

 \bullet ω -words (right infinite words)

- \bullet ω -words (right infinite words)
- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$

- \bullet ω -words (right infinite words)
- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- Any total map $x: \mathbb{N} \to A$

- \bullet ω -words (right infinite words)
- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- Any total map $x: \mathbb{N} \to A$
- is called an ω -word.

- \bullet ω -words (right infinite words)
- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- Any total map $x: \mathbb{N} \to A$
- is called an ω -word.
- ♦ Notation.

- \bullet ω -words (right infinite words)
- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- Any total map $x: \mathbb{N} \to A$
- is called an ω -word.
- ♦ Notation.
- Let $x_i = x(i)$ then $x = x_0 x_1 \dots x_i \dots$

- \bullet ω -words (right infinite words)
- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- Any total map $x: \mathbb{N} \to A$
- is called an ω -word.
- ♦ Notation.
- Let $x_i = x(i)$ then $x = x_0 x_1 \dots x_i \dots$
- A^{ω} the set of all ω -words in alphabet A

- ω -words (right infinite words)
- Let $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- Any total map $x: \mathbb{N} \to A$
- is called an ω -word.
- ♦ Notation.
- Let $x_i = x(i)$ then $x = x_0 x_1 \dots x_i \dots$
- A^{ω} the set of all ω -words in alphabet A
- $A^{\infty} = A^* \cup A^{\omega}$

• We introduce in A^{∞} the so called prefix metric d as follows.

- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.

- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.
- Then $d(x,y) = \inf\{ 2^{-|u|} \mid u \in \operatorname{Pref}(x) \cap \operatorname{Pref}(y) \}.$

- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.
- Then $d(x,y) = \inf\{ 2^{-|u|} \mid u \in \operatorname{Pref}(x) \cap \operatorname{Pref}(y) \}.$
- Here |u| the length of word u

- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.
- Then $d(x,y) = \inf\{ 2^{-|u|} \mid u \in \operatorname{Pref}(x) \cap \operatorname{Pref}(y) \}.$
- Here |u| the length of word u;
- Pref(x) the set of all prefixes of x.

 \bullet A sequence of words $v_0, v_1, \ldots, v_n, \ldots$

- \bullet A sequence of words $v_0, v_1, \ldots, v_n, \ldots$
- is called a bi-ideal sequence

- \bullet A sequence of words $v_0, v_1, \ldots, v_n, \ldots$
- is called a bi-ideal sequence
- if $\forall i \ v_{i+1} \in v_i A^* v_i$.

- \bullet A sequence of words $v_0, v_1, \ldots, v_n, \ldots$
- is called a bi-ideal sequence
- if $\forall i \ v_{i+1} \in v_i A^* v_i$.
- \clubsuit The sequence $v_0, v_1, \ldots, v_n, \ldots$

- \bullet A sequence of words $v_0, v_1, \ldots, v_n, \ldots$
- is called a bi-ideal sequence
- if $\forall i \ v_{i+1} \in v_i A^* v_i$.
- \clubsuit The sequence $v_0, v_1, \ldots, v_n, \ldots$
- is a bi-ideal sequence

- \blacklozenge A sequence of words $v_0, v_1, \ldots, v_n, \ldots$
- is called a bi-ideal sequence
- if $\forall i \ v_{i+1} \in v_i A^* v_i$.
- \clubsuit The sequence $v_0, v_1, \ldots, v_n, \ldots$
- is a bi-ideal sequence
- \bullet if and only if

- \bullet A sequence of words $v_0, v_1, \ldots, v_n, \ldots$
- is called a bi-ideal sequence
- if $\forall i \ v_{i+1} \in v_i A^* v_i$.
- \clubsuit The sequence $v_0, v_1, \ldots, v_n, \ldots$
- is a bi-ideal sequence
- if and only if
- there exists a sequence of words $u_0, u_1, \ldots, u_n, \ldots$

- \bullet A sequence of words $v_0, v_1, \ldots, v_n, \ldots$
- is called a bi-ideal sequence
- if $\forall i \ v_{i+1} \in v_i A^* v_i$.
- \clubsuit The sequence $v_0, v_1, \ldots, v_n, \ldots$
- is a bi-ideal sequence
- if and only if
- there exists a sequence of words $u_0, u_1, \ldots, u_n, \ldots$
- such that

$$v_0 = u_0,
 v_{i+1} = v_i u_{i+1} v_i.$$

lacktriangle A word $x \in A^{\omega}$ is called a bi-ideal

- lacktriangle A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_0, v_1, \ldots, v_n, \ldots$

- lacktriangle A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_0, v_1, \ldots, v_n, \ldots$
- such that $\lim_{i\to\infty} v_i = x$.

- lacktriangle A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_0, v_1, \ldots, v_n, \ldots$
- such that $\lim_{i \to \infty} v_i = x$.
- \blacklozenge Let $u_0, u_1, \dots, u_n, \dots$ be a sequence of words such that

$$v_0 = u_0,$$

$$v_{i+1} = v_i u_{i+1} v_i.$$

- lacktriangle A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_0, v_1, \ldots, v_n, \ldots$
- such that $\lim_{i\to\infty} v_i = x$.
- lack Let $u_0, u_1, \dots, u_n, \dots$ be a sequence of words such that

$$\begin{array}{rcl} v_0 & = & u_0, \\ v_{i+1} & = & v_i u_{i+1} v_i. \end{array}$$

• Then we say that the bi-ideal x is generated by the sequence $u_0, u_1, \ldots, u_n, \ldots$

• Let $x \in A^{\omega}$ then $x[i, j+1) = x_i x_{i+1} \dots x_j$

- Let $x \in A^{\omega}$ then $x[i, j+1) = x_i x_{i+1} \dots x_j$
- A factor $u \in F(x)$ is called recurrent if the set $\{i \mid u = x[i, |u|)\}$ has not upper bound.

- lacktriangledown Let $x \in A^{\omega}$ then $x[i, j+1) = x_i x_{i+1} \dots x_j$
- A factor $u \in F(x)$ is called recurrent if the set $\{i \mid u = x[i, |u|)\}$ has not upper bound.
- A word $x \in A^{\omega}$ is called recurrent if any of its factors is recurrent.

- Let $x \in A^{\omega}$ then $x[i, j+1) = x_i x_{i+1} \dots x_j$
- A factor $u \in F(x)$ is called recurrent if the set $\{i \mid u = x[i, |u|)\}$ has not upper bound.
- A word $x \in A^{\omega}$ is called recurrent if any of its factors is recurrent.
- A word is recurrent if and only if it is a bi-ideal.

 $\blacklozenge \ \, \text{Let} \quad \, v \in A^+ \ \, \text{and} \ \, v^0 = \lambda, \, \, v^{n+1} = v^n v \quad \text{then} \quad \, v^\omega = \lim_{n \to \infty} v^n$

- lacklach Let $v \in A^+$ and $v^0 = \lambda$, $v^{n+1} = v^n v$ then $v^\omega = \lim_{n \to \infty} v^n$
- We say that $x \in A^{\omega}$ is ultimately periodic if $x = uv^{\omega}$ for some $u \in A^*, v \in A^+$.

- Let $v \in A^+$ and $v^0 = \lambda$, $v^{n+1} = v^n v$ then $v^\omega = \lim_{n \to \infty} v^n$
- We say that $x \in A^{\omega}$ is ultimately periodic if $x = uv^{\omega}$ for some $u \in A^*, v \in A^+$.
- If $u = \lambda$ the word v^{ω} is called periodic of period p = |v|.

- Let $v \in A^+$ and $v^0 = \lambda$, $v^{n+1} = v^n v$ then $v^\omega = \lim_{n \to \infty} v^n$
- We say that $x \in A^{\omega}$ is ultimately periodic if $x = uv^{\omega}$ for some $u \in A^*, v \in A^+$.
- If $u = \lambda$ the word v^{ω} is called periodic of period p = |v|.
- \clubsuit Let $x \in A^{\omega}$ be an ultimately periodic. If x is a bi-ideal then x is periodic.

lackloain It is said a factor u occurs syndetically in $x \in A^{\omega}$ if there exists an integer k such that

• It is said a factor u occurs syndetically in $x \in A^{\omega}$ if there exists an integer k such that in any factor of x of length k there is at least one occurrence of u

• It is said a factor u occurs syndetically in $x \in A^{\omega}$ if there exists an integer k such that in any factor of x of length k there is at least one occurrence of u, namely, $\exists k \ [v \in F(x) \land |v| = k \Rightarrow u \in F(v)]$

- It is said a factor u occurs syndetically in $x \in A^{\omega}$ if there exists an integer k such that in any factor of x of length k there is at least one occurrence of u, namely, $\exists k \; [\; v \in \mathcal{F}(x) \; \wedge \; |v| = k \; \Rightarrow \; u \in \mathcal{F}(v) \;]$
- A word x is called uniformly recurrent when all its factors occur syndetically in x.

- It is said a factor u occurs syndetically in $x \in A^{\omega}$ if there exists an integer k such that in any factor of x of length k there is at least one occurrence of u, namely, $\exists k \ [\ v \in F(x) \land |v| = k \ \Rightarrow \ u \in F(v)\]$
- A word x is called uniformly recurrent when all its factors occur syndetically in x.
- \clubsuit If $x \in A^{\omega}$ is uniformly recurrent then x is a bi-ideal.

 \blacklozenge Let x be a bi-ideal generated by the sequence

 $u_0, u_1, \ldots, u_n, \ldots$

• Let x be a bi-ideal generated by the sequence $u_0, u_1, \ldots, u_n, \ldots$

• The bi-ideal x is called finitely generated if $\exists m \, \forall i \, \forall j \, (i \equiv j \, (\text{mod } m) \Rightarrow u_i = u_j).$

- Let x be a bi-ideal generated by the sequence $u_0, u_1, \ldots, u_n, \ldots$
- The bi-ideal x is called finitely generated if ∃m ∀i ∀j (i ≡ j (mod m) ⇒ u_i = u_j).

 We say in this situation m-tuple (u₀, u₁, ..., u_{m-1}) generates the bi-ideal x.

- Let x be a bi-ideal generated by the sequence $u_0, u_1, \ldots, u_n, \ldots$
- The bi-ideal x is called finitely generated if
 ∃m ∀i ∀j (i ≡ j (mod m) ⇒ u_i = u_j).
 We say in this situation m-tuple (u₀, u₁, ..., u_{m-1}) generates the bi-ideal x.
- A If $x \in A^{\omega}$ is finitely generated then x is uniformly recurrent.

lacktriangle The factor v is called a suffix of $w \in A^*$

if w = uv for any $u \in A^*$.

Suff(w) — the set of all suffixes of w.

lacktriangle The factor v is called a suffix of $w \in A^*$

if
$$w = uv$$
 for any $u \in A^*$.

Suff(w) — the set of all suffixes of w.

 \clubsuit If $\bigcup_{i=0}^{m-1} \operatorname{Pref}(u_i)$ or $\bigcup_{i=0}^{m-1} \operatorname{Suff}(u_i)$

has at least two words with one and the same length

- ♦ The factor v is called a suffix of $w \in A^*$ if w = uv for any $u \in A^*$.

 Suff(w) the set of all suffixes of w.
- ♣ If $\bigcup_{i=0}^{m-1} \operatorname{Pref}(u_i)$ or $\bigcup_{i=0}^{m-1} \operatorname{Suff}(u_i)$ has at least two words with one and the same length then a bi-ideal generated by $(u_0, u_1, \dots, u_{m-1})$ is not ultimately periodic.

 \clubsuit Let A be an alphabet and every letter $a \in A$ is chosen

with one and the same probability $p(a) = \frac{1}{|A|}$.

 \clubsuit Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $p(a) = \frac{1}{|A|}$.

Let p be a probability that a bi-ideal generated by (u_0, u_1, \ldots, u_m) is ultimately periodic.

 \clubsuit Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $p(a) = \frac{1}{|A|}$.

Let p be a probability that a bi-ideal generated by (u_0, u_1, \ldots, u_m) is ultimately periodic.

If $\forall i |u_i| \ge n$ then $p \le \frac{1}{|A|^{mn}}$.

 \clubsuit Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $p(a) = \frac{1}{|A|}$.

Let p be a probability that a bi-ideal generated by (u_0, u_1, \ldots, u_m) is ultimately periodic.

If $\forall i |u_i| \ge n$ then $p \le \frac{1}{|A|^{mn}}$.

• Let $A = \{0, 1\}$ and m = n = 10then probability $p \le \frac{1}{2^{100}}$.

$$\begin{array}{rcl} v_0 & = & \mathbf{0}, \\ v_1 & = & 00100, \\ v_2 & = & 00100000100, \\ v_3 & = & 0010000010001000100000100, \\ & \cdot & \cdot & \cdot \\ x & = & \lim_{i \to \infty} v_i \, . \end{array}$$

• This bi-ideal is not periodic

$$\begin{array}{rcl} v_0 & = & \mathbf{0}, \\ v_1 & = & 00100, \\ v_2 & = & 00100000100, \\ v_3 & = & 0010000010001000100000100, \\ & \cdot & \cdot & \cdot \\ x & = & \lim_{i \to \infty} v_i \, . \end{array}$$

• This bi-ideal is not periodic neverthelesss

$$\begin{aligned} & \operatorname{Pref}\{0,010\} &=& \{0,01,010\}, \\ & \operatorname{Suff}\{0,010\} &=& \{0,10,010\}, \end{aligned}$$

$$\begin{array}{rcl} v_0 & = & \mathbf{0}, \\ v_1 & = & 00100, \\ v_2 & = & 00100000100, \\ v_3 & = & 0010000010001000100000100, \\ & \cdot & \cdot & \cdot \\ x & = & \lim_{i \to \infty} v_i \, . \end{array}$$

• This bi-ideal is not periodic neverthelesss

$$Pref\{0,010\} = \{0,01,010\}, Suff\{0,010\} = \{0,10,010\},$$

namely, these sets contain the words with different size only.

• Let $w \in A^+$ and $w^* = \bigcup_{n=0}^{\infty} \{w^n\}$.

- Let $w \in A^+$ and $w^* = \bigcup_{n=0}^{\infty} \{w^n\}$.
- \clubsuit The bi-ideal generated by the tuple $(u_0, u_1, \dots, u_{m-1})$ is **periodic**

- Let $w \in A^+$ and $w^* = \bigcup_{n=0}^{\infty} \{w^n\}$.
- \clubsuit The bi-ideal generated by the tuple $(u_0, u_1, \dots, u_{m-1})$

is **periodic**

if and only if

- Let $w \in A^+$ and $w^* = \bigcup_{n=0}^{\infty} \{w^n\}$.
- \clubsuit The bi-ideal generated by the tuple $(u_0, u_1, \ldots, u_{m-1})$

is **periodic**

if and only if then

$$\exists w \forall i \in \overline{0, m-1} \ u_i \in w^*.$$

 \blacklozenge Let x be a bi-ideal generated by the sequence

 $u_0, u_1, \ldots, u_n, \ldots$

lacktriangle Let x be a bi-ideal generated by the sequence

$$u_0, u_1, \ldots, u_n, \ldots$$

• The bi-ideal x is called bounded

lacktriangle Let x be a bi-ideal generated by the sequence

$$u_0, u_1, \ldots, u_n, \ldots$$

• The bi-ideal x is called bounded if

$$\exists l \, \forall i \, |u_i| \leq l.$$

- Let x be a bi-ideal generated by the sequence $u_0, u_1, \ldots, u_n, \ldots$
- The bi-ideal x is called bounded if $\exists l \, \forall i \, |u_i| \leq l.$
- A If $x \in A^{\omega}$ is bounded then x is uniformly recurrent.

• Let x be a bi-ideal generated by sequence (u_i)

• Let x be a bi-ideal generated by sequence (u_i) , where

$$\begin{array}{rcl} u_0 & = & 0, \\ u_1 & = & 1, \\ \forall i > 1 & u_i & = & 00100 \,. \end{array}$$

• Let x be a bi-ideal generated by sequence (u_i) , where

$$u_0 = 0,$$

 $u_1 = 1,$
 $\forall i > 1 \quad u_i = 00100.$

Then

• Let x be a bi-ideal generated by sequence (u_i) , where

$$\begin{array}{rcl} u_0 & = & 0, \\ u_1 & = & 1, \\ \forall i > 1 & u_i & = & 00100 \,. \end{array}$$

Then

$$\begin{array}{rcl} v_0 & = & \mathbf{0}, \\ v_1 & = & 010, \\ v_2 & = & 010 \ 00100 \ 010, \\ v_3 & = & 01000100010 \ 00100 \ 01000100010, \\ & \cdot & \cdot & \cdot \\ x & = & \lim_{i \to \infty} v_i \, . \end{array}$$

 \bullet Thus x is the bounded bi-ideal

- Thus x is the bounded bi-ideal,
- besides $x = (0100)^{\omega}$.

- Thus x is the bounded bi-ideal,
- besides $x = (0100)^{\omega}$.
- This demonstrates

- Thus x is the bounded bi-ideal,
- besides $x = (0100)^{\omega}$.
- This demonstrates that straightforward generalization

- Thus x is the bounded bi-ideal,
- besides $x = (0100)^{\omega}$.
- This demonstrates that straightforward generalization of Theorem

- Thus x is the bounded bi-ideal,
- besides $x = (0100)^{\omega}$.
- This demonstrates that straightforward generalization of Theorem
- \clubsuit The bi-ideal generated by the tuple $(u_0, u_1, \ldots, u_{m-1})$

is **periodic** if and only if then

$$\exists w \forall i \in \overline{0, m-1} \ u_i \in w^*.$$

- Thus x is the bounded bi-ideal,
- besides $x = (0100)^{\omega}$.
- This demonstrates that straightforward generalization of Theorem
- \clubsuit The bi-ideal generated by the tuple $(u_0, u_1, \ldots, u_{m-1})$

is **periodic** if and only if then

$$\exists w \forall i \in \overline{0, m-1} \ u_i \in w^*$$
.

for bounded bi-ideals is not valid.

 $u_0, u_1, \ldots, u_n, \ldots$

 $u_0, u_1, \ldots, u_n, \ldots$

A bi-ideal x is **periodic**

 $u_0, u_1, \ldots, u_n, \ldots$

A bi-ideal x is **periodic**

if and only if

$$u_0, u_1, \ldots, u_n, \ldots$$

A bi-ideal x is **periodic**

if and only if

$$\exists n \in \mathbb{N} \ \exists u \exists v \ (v_n u \in v^* \ \land \ \forall i \in \mathbb{Z}_+ \ u_{n+i} \in uv^*) \,.$$

Thank You very much!