11th Mons Days of Theoretical Computer Science 30th August - 2nd September, 2006, Rennes

Jānis Buls
University of Latvia

FROM BI-IDEALS TO PERIODICITY

\diamond The repetitions (periodicities) of strings (words)

$$
a_{0} a_{1} \ldots a_{n} \ldots
$$

\diamond The repetitions (periodicities) of strings (words)

$$
a_{0} a_{1} \ldots a_{n} \ldots
$$

are fundamental objects in
\diamond The repetitions (periodicities) of strings (words)

$$
a_{0} a_{1} \ldots a_{n} \ldots
$$

are fundamental objects in

- word combinatorics
\diamond The repetitions (periodicities) of strings (words)

$$
a_{0} a_{1} \ldots a_{n} \ldots
$$

are fundamental objects in

- word combinatorics
as well as in applications
\diamond The repetitions (periodicities) of strings (words)

$$
a_{0} a_{1} \ldots a_{n} \ldots
$$

are fundamental objects in

- word combinatorics
as well as in applications, such as
- string matching algorithms
\diamond The repetitions (periodicities) of strings (words)

$$
a_{0} a_{1} \ldots a_{n} \ldots
$$

are fundamental objects in

- word combinatorics
as well as in applications, such as
- string matching algorithms,
- text compression
\diamond The repetitions (periodicities) of strings (words)

$$
a_{0} a_{1} \ldots a_{n} \ldots
$$

are fundamental objects in

- word combinatorics
as well as in applications, such as
- string matching algorithms,
- text compression,
- molecular biology.
v-words (right infinite words)
- ω-words (right infinite words)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- ω-words (right infinite words)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- Any total map $x: \mathbb{N} \rightarrow A$
- ω-words (right infinite words)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- Any total map $x: \mathbb{N} \rightarrow A$
- is called an ω-word.
- ω-words (right infinite words)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- Any total map $x: \mathbb{N} \rightarrow A$
- is called an ω-word.
\diamond Notation.
- ω-words (right infinite words)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- Any total map $x: \mathbb{N} \rightarrow A$
- is called an ω-word.
\diamond Notation.
- Let $\quad x_{i}=x(i)$ then $x=x_{0} x_{1} \ldots x_{i} \ldots$
ω-words (right infinite words)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- Any total map $x: \mathbb{N} \rightarrow A$
- is called an ω-word.
\diamond Notation.
- Let $\quad x_{i}=x(i)$ then $x=x_{0} x_{1} \ldots x_{i} \ldots$
- A^{ω} - the set of all ω-words in alphabet A
- ω-words (right infinite words)
- Let $\mathbb{N}=\{0,1,2, \ldots\}$.
- Any total map $x: \mathbb{N} \rightarrow A$
- is called an ω-word.
\diamond Notation.
- Let $\quad x_{i}=x(i)$ then $x=x_{0} x_{1} \ldots x_{i} \ldots$
- A^{ω} - the set of all ω-words in alphabet A
- $A^{\infty}=A^{*} \cup A^{\omega}$

\diamond Metric

\diamond Metric

- We introduce in A^{∞} the so called prefix metric d as follows.
\diamond Metric
- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.
\diamond Metric
- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.
- Then $\quad d(x, y)=\inf \left\{2^{-|u|} \mid u \in \operatorname{Pref}(x) \cap \operatorname{Pref}(y)\right\}$.
\diamond Metric
- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.
- Then $\quad d(x, y)=\inf \left\{2^{-|u|} \mid u \in \operatorname{Pref}(x) \cap \operatorname{Pref}(y)\right\}$.
- Here $|u|-\quad$ the lenght of word u
\diamond Metric
- We introduce in A^{∞} the so called prefix metric d as follows.
- Let $x, y \in A^{\infty}$.
- Then $\quad d(x, y)=\inf \left\{2^{-|u|} \mid u \in \operatorname{Pref}(x) \cap \operatorname{Pref}(y)\right\}$.
- Here $|u|-\quad$ the lenght of word u;
- $\operatorname{Pref}(x) \quad$ - the set of all prefixes of x.
- A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is called a bi-ideal sequence
- A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is called a bi-ideal sequence
- if $\forall i v_{i+1} \in v_{i} A^{*} v_{i}$.
- A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is called a bi-ideal sequence
- if $\forall i v_{i+1} \in v_{i} A^{*} v_{i}$.
\& The sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
\checkmark A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is called a bi-ideal sequence
- if $\forall i v_{i+1} \in v_{i} A^{*} v_{i}$.
\& The sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is a bi-ideal sequence
\checkmark A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is called a bi-ideal sequence
- if $\forall i v_{i+1} \in v_{i} A^{*} v_{i}$.
\& The sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is a bi-ideal sequence
- if and only if
\checkmark A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is called a bi-ideal sequence
- if $\forall i v_{i+1} \in v_{i} A^{*} v_{i}$.
\& The sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is a bi-ideal sequence
- if and only if
- there exists a sequence of words $u_{0}, u_{1}, \ldots, u_{n}, \ldots$
- A sequence of words $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is called a bi-ideal sequence
- if $\forall i v_{i+1} \in v_{i} A^{*} v_{i}$.
\& The sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- is a bi-ideal sequence
- if and only if
- there exists a sequence of words $u_{0}, u_{1}, \ldots, u_{n}, \ldots$
- such that

$$
\begin{aligned}
v_{0} & =u_{0} \\
v_{i+1} & =v_{i} u_{i+1} v_{i}
\end{aligned}
$$

- A word $x \in A^{\omega}$ is called a bi-ideal
- A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- such that $\lim _{i \rightarrow \infty} v_{i}=x$.
- A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- such that $\lim _{i \rightarrow \infty} v_{i}=x$.

Let $u_{0}, u_{1}, \ldots, u_{n}, \ldots$ be a sequence of words such that

$$
\begin{aligned}
v_{0} & =u_{0} \\
v_{i+1} & =v_{i} u_{i+1} v_{i}
\end{aligned}
$$

- A word $x \in A^{\omega}$ is called a bi-ideal
- if there exists a bi-ideal sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$
- such that $\lim _{i \rightarrow \infty} v_{i}=x$.

Let $u_{0}, u_{1}, \ldots, u_{n}, \ldots$ be a sequence of words such that

$$
\begin{aligned}
v_{0} & =u_{0}, \\
v_{i+1} & =v_{i} u_{i+1} v_{i} .
\end{aligned}
$$

- Then we say that the bi-ideal x is generated by the sequence
$u_{0}, u_{1}, \ldots, u_{n}, \ldots$

Let $\quad x \in A^{\omega}$ then $x[i, j+1)=x_{i} x_{i+1} \ldots x_{j}$
\checkmark Let $\quad x \in A^{\omega}$ then $x[i, j+1)=x_{i} x_{i+1} \ldots x_{j}$

- A factor $u \in \mathrm{~F}(x)$ is called recurrent
if the set $\quad\{i \mid u=x[i,|u|)\}$ has not upper bound.

Let $x \in A^{\omega}$ then $x[i, j+1)=x_{i} x_{i+1} \ldots x_{j}$

- A factor $u \in \mathrm{~F}(x)$ is called recurrent
if the set $\quad\{i \mid u=x[i,|u|)\} \quad$ has not upper bound.
- A word $x \in A^{\omega}$ is called recurrent
if any of its factors is recurrent.

Let $x \in A^{\omega}$ then $x[i, j+1)=x_{i} x_{i+1} \ldots x_{j}$

- A factor $u \in \mathrm{~F}(x)$ is called recurrent
if the set $\quad\{i \mid u=x[i,|u|)\} \quad$ has not upper bound.
- A word $x \in A^{\omega}$ is called recurrent
if any of its factors is recurrent.
\& A word is recurrent if and only if it is a bi-ideal.

Let $\quad v \in A^{+}$and $v^{0}=\lambda, v^{n+1}=v^{n} v \quad$ then $\quad v^{\omega}=\lim _{n \rightarrow \infty} v^{n}$

Let $\quad v \in A^{+}$and $v^{0}=\lambda, v^{n+1}=v^{n} v \quad$ then $\quad v^{\omega}=\lim _{n \rightarrow \infty} v^{n}$

- We say that $x \in A^{\omega}$ is ultimately periodic
if $\quad x=u v^{\omega} \quad$ for some $\quad u \in A^{*}, v \in A^{+}$.
\checkmark Let $\quad v \in A^{+}$and $v^{0}=\lambda, v^{n+1}=v^{n} v \quad$ then $\quad v^{\omega}=\lim _{n \rightarrow \infty} v^{n}$
- We say that $x \in A^{\omega}$ is ultimately periodic
if $\quad x=u v^{\omega} \quad$ for some $\quad u \in A^{*}, v \in A^{+}$.
- If $u=\lambda$ the word v^{ω} is called
periodic of period $\quad p=|v|$.

Let $\quad v \in A^{+}$and $v^{0}=\lambda, v^{n+1}=v^{n} v \quad$ then $\quad v^{\omega}=\lim _{n \rightarrow \infty} v^{n}$

- We say that $x \in A^{\omega}$ is ultimately periodic
if $\quad x=u v^{\omega} \quad$ for some $\quad u \in A^{*}, v \in A^{+}$.
- If $u=\lambda$ the word v^{ω} is called
periodic of period $\quad p=|v|$.
\& Let $x \in A^{\omega}$ be an ultimately periodic.
If x is a bi-ideal then x is periodic.
- It is said a factor u occurs syndetically in $\quad x \in A^{\omega}$
if there exists an integer k such that
- It is said a factor u occurs syndetically in $\quad x \in A^{\omega}$
if there exists an integer k such that
in any factor of x of length k
there is at least one occurrence of u
- It is said a factor u occurs syndetically in $\quad x \in A^{\omega}$
if there exists an integer k such that
in any factor of x of length k
there is at least one occurrence of u, namely,
$\exists k[v \in \mathrm{~F}(x) \wedge|v|=k \Rightarrow u \in \mathrm{~F}(v)]$
- It is said a factor u occurs syndetically in $\quad x \in A^{\omega}$
if there exists an integer k such that
in any factor of x of length k
there is at least one occurrence of u, namely,
$\exists k[v \in \mathrm{~F}(x) \wedge|v|=k \Rightarrow u \in \mathrm{~F}(v)]$
- A word x is called uniformly recurrent when all its factors occur syndetically in x.
- It is said a factor u occurs syndetically in $\quad x \in A^{\omega}$
if there exists an integer k such that
in any factor of x of length k
there is at least one occurrence of u, namely,
$\exists k[v \in \mathrm{~F}(x) \wedge|v|=k \Rightarrow u \in \mathrm{~F}(v)]$
- A word x is called uniformly recurrent when all its factors occur syndetically in x.
\& If $x \in A^{\omega}$ is uniformly recurrent then x is a bi-ideal.

Let x be a bi-ideal generated by the sequence

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

Let x be a bi-ideal generated by the sequence

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

- The bi-ideal x is called finitely generated if

$$
\exists m \forall i \forall j\left(i \equiv j(\bmod m) \Rightarrow u_{i}=u_{j}\right)
$$

Let x be a bi-ideal generated by the sequence
$u_{0}, u_{1}, \ldots, u_{n}, \ldots$

- The bi-ideal x is called finitely generated if
$\exists m \forall i \forall j\left(i \equiv j(\bmod m) \Rightarrow u_{i}=u_{j}\right)$.
We say in this situation m-tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
generates the bi-ideal x.

Let x be a bi-ideal generated by the sequence
$u_{0}, u_{1}, \ldots, u_{n}, \ldots$

- The bi-ideal x is called finitely generated if
$\exists m \forall i \forall j\left(i \equiv j(\bmod m) \Rightarrow u_{i}=u_{j}\right)$.
We say in this situation m-tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
generates the bi-ideal x.
\& If $x \in A^{\omega}$ is finitely generated
then $\quad x$ is uniformly recurrent.
- The factor $\quad v \quad$ is called a suffix of $\quad w \in A^{*}$
if $\quad w=u v \quad$ for any $\quad u \in A^{*}$.
$\operatorname{Suff}(w)$ - the set of all suffixes of w.
- The factor $\quad v \quad$ is called a suffix of $\quad w \in A^{*}$
if $\quad w=u v \quad$ for any $\quad u \in A^{*}$.
$\operatorname{Suff}(w)$ - the set of all suffixes of w.
\& If $\bigcup_{i=0}^{m-1} \operatorname{Pref}\left(u_{i}\right)$ or $\bigcup_{i=0}^{m-1} \operatorname{Suff}\left(u_{i}\right)$
has at least two words with one and the same length
- The factor $\quad v \quad$ is called a suffix of $\quad w \in A^{*}$
if $\quad w=u v \quad$ for any $\quad u \in A^{*}$.
$\operatorname{Suff}(w)$ - the set of all suffixes of w.
\& If $\bigcup_{i=0}^{m-1} \operatorname{Pref}\left(u_{i}\right)$ or $\bigcup_{i=0}^{m-1} \operatorname{Suff}\left(u_{i}\right)$
has at least two words with one and the same length
then a bi-ideal generated by $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
is not ultimately periodic.
\& Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $\quad p(a)=\frac{1}{|A|}$.
\& Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $\quad p(a)=\frac{1}{|A|}$.

Let $\quad p$ be a probability that a bi-ideal generated by $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ is ultimately periodic.
\& Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $\quad p(a)=\frac{1}{|A|}$.

Let $\quad p$ be a probability that a bi-ideal generated by $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ is ultimately periodic.

If $\quad \forall i\left|u_{i}\right| \geq n \quad$ then $\quad p \leq \frac{1}{|A|^{m n}}$.
\& Let A be an alphabet and every letter $a \in A$ is chosen with one and the same probability $\quad p(a)=\frac{1}{|A|}$.

Let p be a probability that a bi-ideal generated by $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ is ultimately periodic.

If $\quad \forall i\left|u_{i}\right| \geq n \quad$ then $\quad p \leq \frac{1}{|A|^{m n}}$.

- Let $A=\{0,1\}$ and $m=n=10$
then probability $\quad p \leq \frac{1}{2^{100}}$.
- Let x be a bi-ideal generated by $(0,010)$
- Let x be a bi-ideal generated by $(0,010)$ then

$$
\begin{aligned}
v_{0} & =0 \\
v_{1} & =00100 \\
v_{2} & =00100000100 \\
v_{3} & =0010000010001000100000100 \\
\cdot & \cdot \\
x & =\lim _{i \rightarrow \infty} v_{i}
\end{aligned}
$$

- Let x be a bi-ideal generated by $(0,010)$ then

$$
\begin{aligned}
v_{0} & =0 \\
v_{1} & =00100 \\
v_{2} & =00100000100 \\
v_{3} & =0010000010001000100000100 \\
\cdot & \cdot \\
x & =\lim _{i \rightarrow \infty} v_{i}
\end{aligned}
$$

- This bi-ideal is not periodic
- Let x be a bi-ideal generated by $(0,010)$ then

$$
\begin{aligned}
v_{0} & =0 \\
v_{1} & =00100 \\
v_{2} & =00100000100 \\
v_{3} & =0010000010001000100000100 \\
\cdot & \cdot \\
x & =\lim _{i \rightarrow \infty} v_{i}
\end{aligned}
$$

- This bi-ideal is not periodic neverthelesss

$$
\begin{aligned}
\operatorname{Pref}\{0,010\} & =\{0,01,010\} \\
\operatorname{Suff}\{0,010\} & =\{0,10,010\}
\end{aligned}
$$

- Let x be a bi-ideal generated by $(0,010)$ then

$$
\begin{aligned}
v_{0} & =0 \\
v_{1} & =00100 \\
v_{2} & =00100000100 \\
v_{3} & =0010000010001000100000100 \\
\cdot & \cdot \\
x & =\lim _{i \rightarrow \infty} v_{i}
\end{aligned}
$$

- This bi-ideal is not periodic neverthelesss

$$
\begin{aligned}
\operatorname{Pref}\{0,010\} & =\{0,01,010\} \\
\operatorname{Suff}\{0,010\} & =\{0,10,010\}
\end{aligned}
$$

namely, these sets contain the words with different size only.

- Let $\quad w \in A^{+} \quad$ and $\quad w^{*}=\bigcup_{n=0}^{\infty}\left\{w^{n}\right\}$.
- Let $\quad w \in A^{+} \quad$ and $\quad w^{*}=\bigcup_{n=0}^{\infty}\left\{w^{n}\right\}$.
\& The bi-ideal generated by the tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
is periodic
- Let $\quad w \in A^{+} \quad$ and $\quad w^{*}=\bigcup_{n=0}^{\infty}\left\{w^{n}\right\}$.
\& The bi-ideal generated by the tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
is periodic
if and only if
- Let $\quad w \in A^{+} \quad$ and $\quad w^{*}=\bigcup_{n=0}^{\infty}\left\{w^{n}\right\}$.
\& The bi-ideal generated by the tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
is periodic
if and only if then

$$
\exists w \forall i \in \overline{0, m-1} u_{i} \in w^{*}
$$

Let x be a bi-ideal generated by the sequence

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

Let x be a bi-ideal generated by the sequence $u_{0}, u_{1}, \ldots, u_{n}, \ldots$

- The bi-ideal x is called bounded

Let x be a bi-ideal generated by the sequence

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

- The bi-ideal x is called bounded if

$$
\exists l \forall i\left|u_{i}\right| \leq l .
$$

Let x be a bi-ideal generated by the sequence
$u_{0}, u_{1}, \ldots, u_{n}, \ldots$

- The bi-ideal x is called bounded if
$\exists l \forall i\left|u_{i}\right| \leq l$.
\& If $x \in A^{\omega}$ is bounded
then $\quad x$ is uniformly recurrent.
- Let x be a bi-ideal generated by sequence $\left(u_{i}\right)$
- Let x be a bi-ideal generated by sequence $\left(u_{i}\right)$, where

$$
\begin{aligned}
u_{0} & =0 \\
u_{1} & =1 \\
\forall i>1 \quad u_{i} & =00100 .
\end{aligned}
$$

- Let x be a bi-ideal generated by sequence $\left(u_{i}\right)$, where

$$
\begin{aligned}
u_{0} & =0 \\
u_{1} & =1 \\
\forall i>1 \quad u_{i} & =00100
\end{aligned}
$$

Then

- Let x be a bi-ideal generated by sequence $\left(u_{i}\right)$, where

$$
\begin{aligned}
u_{0} & =0 \\
u_{1} & =1 \\
\forall i>1 \quad u_{i} & =00100
\end{aligned}
$$

Then

$$
\begin{aligned}
v_{0} & =0 \\
v_{1} & =010 \\
v_{2} & =01000100010 \\
v_{3} & =010001000100010001000100010 \\
\cdot & \cdot \\
x & =\lim _{i \rightarrow \infty} v_{i}
\end{aligned}
$$

- Thus x is the bounded bi-ideal
- Thus x is the bounded bi-ideal,
- besides $x=(0100)^{\omega}$.
- Thus x is the bounded bi-ideal,
- besides $x=(0100)^{\omega}$.
- This demonstrates
- Thus x is the bounded bi-ideal,
- besides $x=(0100)^{\omega}$.
- This demonstrates that straightforward generalization
- Thus x is the bounded bi-ideal,
- besides $x=(0100)^{\omega}$.
- This demonstrates that straightforward generalization of Theorem
- Thus x is the bounded bi-ideal,
- besides $x=(0100)^{\omega}$.
- This demonstrates that straightforward generalization of Theorem
\& The bi-ideal generated by the tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
is periodic if and only if then

$$
\exists w \forall i \in \overline{0, m-1} u_{i} \in w^{*} .
$$

- Thus x is the bounded bi-ideal,
- besides $x=(0100)^{\omega}$.
- This demonstrates that straightforward generalization of Theorem
\& The bi-ideal generated by the tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$
is periodic if and only if then

$$
\exists w \forall i \in \overline{0, m-1} u_{i} \in w^{*} .
$$

for bounded bi-ideals is not valid.
\& Let x be a bi-ideal generated by the sequence
\& Let x be a bi-ideal generated by the sequence

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

\& Let x be a bi-ideal generated by the sequence

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

A bi-ideal x is periodic
\& Let x be a bi-ideal generated by the sequence
$u_{0}, u_{1}, \ldots, u_{n}, \ldots$
A bi-ideal x is periodic
if and only if
\& Let x be a bi-ideal generated by the sequence
$u_{0}, u_{1}, \ldots, u_{n}, \ldots$
A bi-ideal x is periodic
if and only if

$$
\exists n \in \mathbb{N} \exists u \exists v\left(v_{n} u \in v^{*} \wedge \forall i \in \mathbb{Z}_{+} u_{n+i} \in u v^{*}\right)
$$

Thank You

very much!

