Complexity of the hypercubic billiard

Nicolas Bedaride

Laboratoire d'Analyse Topologie Probabilités,
Université Paul Cézanne.

Complexity

If v is an infinite word, we define the complexity function $p(n, v)$ as the number of different words of length n inside v.

$$
\begin{gathered}
p: \mathbb{N}^{*} \rightarrow \mathbb{N} \\
p: n \mapsto p(n, v)
\end{gathered}
$$

Complexity

If v is an infinite word, we define the complexity function $p(n, v)$ as the number of different words of length n inside v.

$$
\begin{gathered}
p: \mathbb{N}^{*} \rightarrow \mathbb{N} \\
p: n \mapsto p(n, v)
\end{gathered}
$$

Example : $u=a b b b a b a a a \ldots \quad p(n, u)=7 \quad \forall n \geq n_{0}$.

Sturmian word I

Theorem [Morse Hedlund 1940.] Let v be an infinite word, assume there exists n such that $p(n, v) \leq n$. Then v is an ultimately periodic word.
A word v such that $p(n, v)=n+1$ for all integer n, is called a Sturmian word.

Sturmian word I

Theorem [Morse Hedlund 1940.] Let v be an infinite word, assume there exists n such that $p(n, v) \leq n$. Then v is an ultimately periodic word.
A word v such that $p(n, v)=n+1$ for all integer n, is called a Sturmian word.
Theorem [Morse Hedlund 1940] We code a square with two letters. Let v be a sturmian word, then there exists m, ω
in \mathbb{R}^{2} such that $\omega=\binom{\omega_{1}}{\omega_{2}} \in \mathbb{R}^{2}, \quad \frac{\omega_{2}}{\omega_{1}} \notin \mathbb{Q}$,

$$
\phi(m, \omega)=v .
$$

Sturmian word II

$v=a a b a a b a a b \ldots$

Rotations

Sturmian word.

I

Rotation on the torus \mathbb{T}^{1}.
I
Two interval exchange.

Piecewise isometries

Interval exchange

1	3
2	4

Polygon exchange

Coding

Fix a point m, consider its orbit $\left(T^{n}(m)\right)_{n \in \mathbb{N}}$. It is coded by a word v.

Assume T is a minimal map.

Computation of $p(n, v)$?

Entropy

Theorem [Buzzi 2002] If T is a piecewise isometry on \mathbb{R}^{d} then

$$
h_{t o p}(T)=\lim \frac{\log p(n)}{n}=0
$$

Rotations

Two interval exchange : Rotation on the torus \mathbb{T}^{1}.
Three polygon exchange : Rotation on the torus \mathbb{T}^{2}.
Two interval exchange $\quad p(n, v)=n+1$.
Three polygon exchange $p(n, v)=n^{2}+n+1$.

Dimension d $\quad p(n, v)=$?

Polygons exchange

Notations

Rotation on the torus :

$$
\begin{gathered}
x \mapsto x+\omega[1] \\
\omega=\left(\omega_{i}\right)_{i \leq d} ; x=\left(x_{i}\right)_{i \leq d} \\
p(n, v)=p(n, \omega)
\end{gathered}
$$

Results

If $d=2$ then $p(n, \omega)=n+1$.
If $d=3$ then:
Rauzy conjecture in 1980.
Arnoux, Mauduit, Shiokawa, Tamura in 1994.
Theorem [B2003] Assume the cube of \mathbb{R}^{3} is coded by three letters. Assume ω fulfills following hypothesis:

$$
\begin{gathered}
\left(\omega_{i}\right)_{i \leq 3} \quad \text { independants over } \mathbb{Q}, \\
\left(\omega_{i}^{-1}\right)_{i \leq 3} \quad \text { independants over } \mathbb{Q}
\end{gathered}
$$

Then

$$
p(n, \omega)=n^{2}+n+1
$$

Result

Theorem [B2006] The cube of \mathbb{R}^{d+1} is coded by $d+1$ letters. Assume ω fulfills following hypothesis :

$\left(\omega_{i}\right)_{i \leq d+1}$ independants over \mathbb{Q},

$$
\left(\omega_{i}^{-1}\right)_{i \in I} \text { independants over } \mathbb{Q} \forall|I|=3,
$$

Then

$$
p(n, d, \omega)=\sum_{i=0}^{\min (n, d)} \frac{n!d!}{(n-i)!(d-i)!i!}
$$

Old and news proofs

- Proof of baryshnikov in 1996 with the following hypothesis:

$$
\begin{array}{cl}
\left(\omega_{i}\right)_{i \leq d+1} & \text { independants over } \\
\left(\omega_{i}^{-1}\right)_{i \leq d+1} & \text { independants over } \\
\mathbb{Q}
\end{array}
$$

We prove for $d \geq 2$:

$$
s(n+1, d)-s(n, d)=d(d-1) p(n, d-2)
$$

Complexity

Global method.

Lett $\mathcal{L}(n)$ a language, $p(n)$ its complexity function and $s(n)=p(n+1)-p(n)$. For $v \in \mathcal{L}(n)$ we introduce

Complexity

Global method.

Lett $\mathcal{L}(n)$ a language, $p(n)$ its complexity function and $s(n)=p(n+1)-p(n)$. For $v \in \mathcal{L}(n)$ we introduce

$$
\begin{aligned}
& m_{l}(v)=\operatorname{card}\{a \in \Sigma, \quad a v \in \mathcal{L}(n+1)\} . \\
& m_{r}(v)=\operatorname{card}\{b \in \Sigma, \quad v b \in \mathcal{L}(n+1)\} . \\
& m_{b}(v)=\operatorname{card}\{a, b \in \Sigma, \quad a v b \in \mathcal{L}(n+2)\} .
\end{aligned}
$$

Definition A word v is called :
right special if $m_{r}(v) \geq 2$,
left special if $m_{l}(v) \geq 2$,
bispecial if it is right and left special.
We have

$$
s(n)=\sum_{v \in \mathcal{L}(n)}\left(m_{r}(v)-1\right)
$$

Definition A word v is called :
right special if $m_{r}(v) \geq 2$,
left special if $m_{l}(v) \geq 2$,
bispecial if it is right and left special.
We have

$$
s(n)=\sum_{v \in \mathcal{L}(n)}\left(m_{r}(v)-1\right)
$$

Cassaigne 97 Consider a factorial extendable language, then for all integer $n \geq 1$

$$
s(n+1)-s(n)=\sum_{v \in \mathcal{B} \mathcal{L}(n)}\left(m_{b}(v)-m_{r}(v)-m_{l}(v)+1\right)
$$

Billiard map

Let P be a polyhedron, $m \in \partial P$ and $\omega \in \mathbb{P R}^{d}$.
The point moves along a straight line until it reaches the boundary of P.
On the face : orthogonal reflection of the line over the plane of the face.

$$
T: \quad X \longrightarrow \partial P \times \mathbb{P}^{d} .
$$

If a trajectory hits an edge, it stops.

Trajectories

Reflections and billiard.

Combinatorics

We label the faces of P by symbols from a finite alphabet. The symbols are called letters. The letters are elements of an alphabet Σ. After coding, the orbit of a point becomes an infinite word.

Combinatorics

We label the faces of P by symbols from a finite alphabet. The symbols are called letters. The letters are elements of an alphabet Σ. After coding, the orbit of a point becomes an infinite word.

Example : The periodic trajectory inside the square is coded by acacac....

$$
p(n, v)=p(n, m, \omega)=p(n, \omega) .
$$

First return map

Consider the billiard map inside the cube of \mathbb{R}^{d}.
Identify the parallel faces.
Then the first return map to a transversal set is a rotation on the torus \mathbb{T}^{d}.

$$
p(n, v)=p(n, \omega)
$$

Diagonals

Definition Consider a polyhedron of \mathbb{R}^{3}. A diagonal between two edges A, B is the union of all billiard trajectories between A and B.
We say it is of length n if it intersects n faces between the two edges.

Diagonals of the square.

Case $d=2$

Let A, B two edges of the cube. We can define diagonal in direction ω :
(0)
$\gamma_{A, B, \omega}=\{a \in A, b \in B,(a b)$ is a billiard trajectory of length n, $a b$ colinear $\omega\}$.

We have

$$
\begin{gathered}
s(n+1,2, \omega)-s(n, 2, \omega)=\sum_{\gamma(\omega)} \sum_{v \in \gamma} i(v) \\
s(n+1,2, \omega)-s(n, 2, \omega)=2
\end{gathered}
$$

Proof

A diagonal can contain several words if $d>2$. We prove

$$
s(n+1, d)-s(n, d)=\sum_{\gamma \in \text { Diag }} \sum_{v \in \gamma} i(v)
$$

Geometry of $\gamma_{A, B, \omega}$.
If $d=3$ then $\operatorname{dim} A=\operatorname{dim} B=2$ and $\operatorname{dim} \gamma_{A, B, \omega}=2$.

Projection

We use projection :
The orhtogonal projection of a billiard trajectory inside the cube is a billiard trajectory.
Projection of $\gamma_{A, B, \omega}$: billiard trajectory inside a cube of dimension $d-1$.

$$
s(n+1, d, \omega)-s(n, d, \omega)=d(d-1) p\left(n, d-2, \omega^{\prime}\right) .
$$

Induction on the dimension.

Open questions

- Complexity of a rectangle exchange?

1	3
2	3

4	
	2
3	1

- Combinatoric properties of rotation words in dimension $d \geq 3$.
- Piecewise isometries, dual billiard.

Rauzy fractal

