
Complexity of the hypercubic billiard

Nicolas Bedaride

Laboratoire d’Analyse Topologie Probabilités,

Université Paul Cézanne.

Complexity of the hypercubic billiard – p.1/26



Complexity

If v is an infinite word, we define the complexity function
p(n, v) as the number of different words of length n inside v.

p : N∗ → N

p : n 7→ p(n, v)
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Complexity

If v is an infinite word, we define the complexity function
p(n, v) as the number of different words of length n inside v.

p : N∗ → N

p : n 7→ p(n, v)

Example : u = abbbabaaa . . . p(n, u) = 7 ∀n ≥ n0.
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Sturmian word I

Theorem [ Morse Hedlund 1940.] Let v be an infinite word,
assume there exists n such that p(n, v) ≤ n. Then v is an
ultimately periodic word.
A word v such that p(n, v) = n + 1 for all integer n, is called a
Sturmian word.
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Sturmian word I

Theorem [ Morse Hedlund 1940.] Let v be an infinite word,
assume there exists n such that p(n, v) ≤ n. Then v is an
ultimately periodic word.
A word v such that p(n, v) = n + 1 for all integer n, is called a
Sturmian word.
Theorem [ Morse Hedlund 1940] We code a square with
two letters. Let v be a sturmian word, then there exists m,ω

in R2 such that ω =

(

ω1

ω2

)

∈ R2,
ω2

ω1
/∈ Q ,

φ(m,ω) = v.
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Sturmian word II

v = aabaabaab . . .
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Rotations

Sturmian word.

m

Rotation on the torus T1.

m

Two interval exchange.
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Piecewise isometries

Interval exchange

1

2

3

4

4

3

2

1 Polygon exchange
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Coding

Fix a point m, consider its orbit (Tn(m))n∈N. It is coded by a
word v.

Assume T is a minimal map.

Computation of p(n, v) ?

Complexity of the hypercubic billiard – p.7/26



Entropy

Theorem [ Buzzi 2002] If T is a piecewise isometry on Rd

then

htop(T ) = lim
log p(n)

n
= 0.
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Rotations

Two interval exchange : Rotation on the torus T1.

Three polygon exchange : Rotation on the torus T2.

Two interval exchange p(n, v) = n + 1.

Three polygon exchange p(n, v) = n2 + n + 1.

Dimension d p(n, v) =?
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Polygons exchange

1

2
3

1

3 2

Complexity of the hypercubic billiard – p.10/26



Notations

Rotation on the torus :

x 7→ x + ω[1],

ω = (ωi)i≤d;x = (xi)i≤d.

p(n, v) = p(n, ω).
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Results

If d = 2 then p(n, ω) = n + 1.
If d = 3 then :
Rauzy conjecture in 1980.
Arnoux, Mauduit, Shiokawa, Tamura in 1994.
Theorem [ B2003] Assume the cube of R3 is coded by three
letters. Assume ω fulfills following hypothesis :

(ωi)i≤3 independants over Q,

(ω−1
i )i≤3 independants over Q,

Then
p(n, ω) = n2 + n + 1.
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Result

Theorem [ B2006] The cube of Rd+1 is coded by d + 1 letters.
Assume ω fulfills following hypothesis :

(ωi)i≤d+1 independants over Q,

(ω−1
i )i∈I independants over Q ∀|I| = 3,

Then

p(n, d, ω) =

min(n,d)
∑

i=0

n!d!

(n − i)!(d − i)!i!
.
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Old and news proofs

• Proof of baryshnikov in 1996 with the following
hypothesis :

(ωi)i≤d+1 independants over Q,

(ω−1
i )i≤d+1 independants over Q.

We prove for d ≥ 2 :

s(n + 1, d) − s(n, d) = d(d − 1)p(n, d − 2).
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Complexity

Global method.

Lett L(n) a language, p(n) its complexity function and
s(n) = p(n + 1) − p(n). For v ∈ L(n) we introduce
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Complexity

Global method.

Lett L(n) a language, p(n) its complexity function and
s(n) = p(n + 1) − p(n). For v ∈ L(n) we introduce

ml(v) = card{a ∈ Σ, av ∈ L(n + 1)}.

mr(v) = card{b ∈ Σ, vb ∈ L(n + 1)}.

mb(v) = card{a, b ∈ Σ, avb ∈ L(n + 2)}.
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Definition A word v is called :
right special if mr(v) ≥ 2,
left special if ml(v) ≥ 2,

bispecial if it is right and left special.
We have

s(n) =
∑

v∈L(n)

(mr(v) − 1).
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Definition A word v is called :
right special if mr(v) ≥ 2,
left special if ml(v) ≥ 2,

bispecial if it is right and left special.
We have

s(n) =
∑

v∈L(n)

(mr(v) − 1).

Cassaigne 97 C onsider a factorial extendable language,
then for all integer n ≥ 1

s(n + 1) − s(n) =
∑

v∈BL(n)

(mb(v) − mr(v) − ml(v) + 1).
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Billiard map

Let P be a polyhedron, m ∈ ∂P and ω ∈ PRd.
The point moves along a straight line until it reaches the
boundary of P .
On the face : orthogonal reflection of the line over the plane
of the face.

T : X −→ ∂P × PRd.

If a trajectory hits an edge, it stops.
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Trajectories

Reflections and billiard.
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Combinatorics

We label the faces of P by symbols from a finite alphabet.
The symbols are called letters . The letters are elements of
an alphabet Σ. After coding, the orbit of a point becomes an
infinite word .
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Combinatorics

We label the faces of P by symbols from a finite alphabet.
The symbols are called letters . The letters are elements of
an alphabet Σ. After coding, the orbit of a point becomes an
infinite word .

Example : The periodic trajectory inside the square is coded
by acacac . . . .

p(n, v) = p(n,m, ω) = p(n, ω).
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First return map

Consider the billiard map inside the cube of Rd.

Identify the parallel faces.

Then the first return map to a transversal set is a rotation on
the torus Td.

p(n, v) = p(n, ω).
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Diagonals

Definition C onsider a polyhedron of R3. A diagonal between
two edges A,B is the union of all billiard trajectories between
A and B.
We say it is of length n if it intersects n faces between the
two edges.

Diagonals of the square.
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Case d = 2

Let A,B two edges of the cube. We can define diagonal in
direction ω :

γA,B,ω = {a ∈ A, b ∈ B, (ab) is a billiard trajectory of length n,

ab colinear ω}.

(0)

We have

s(n + 1, 2, ω) − s(n, 2, ω) =
∑

γ(ω)

∑

v∈γ

i(v).

s(n + 1, 2, ω) − s(n, 2, ω) = 2.
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Proof

A diagonal can contain several words if d > 2. We prove

s(n + 1, d) − s(n, d) =
∑

γ∈Diag

∑

v∈γ

i(v).

Geometry of γA,B,ω.

If d = 3 then dimA = dimB = 2 and dimγA,B,ω = 2.
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Projection

We use projection :
The orhtogonal projection of a billiard trajectory inside the
cube is a billiard trajectory.
Projection of γA,B,ω : billiard trajectory inside a cube of
dimension d − 1.

s(n + 1, d, ω) − s(n, d, ω) = d(d − 1)p(n, d − 2, ω′).

Induction on the dimension.
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Open questions

• Complexity of a rectangle exchange ?
1

2

3

4

4

3

2

1

• Combinatoric properties of rotation words in dimension
d ≥ 3.

• Piecewise isometries, dual billiard.
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Rauzy fractal
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p(n) = 2n + 1.

Complexity of the hypercubic billiard – p.26/26


	Complexity
	Sturmian word I
	Sturmian word II
	Rotations
	Piecewise isometries
	Coding
	Entropy
	Rotations
	Polygons exchange
	Notations
	Results
	Result
	Old and news proofs
	Complexity
	
	Billiard map
	Trajectories
	Combinatorics
	First return map
	Diagonals
	Case $d=2$
	Proof
	Projection
	Open questions
	Rauzy fractal

