On-line Construction of compact suffix vectors
and maximal repeats *

Elise Prieur and Thierry Lecroq

LITIS, University of Rouen, France,

{Elise.Prieur,Thierry.Lecroq}@univ-rouen.fr

Abstract

A suffix vector of a string is an index data structure equivalent to a
suffix tree. It was first introduced by Monostori et al. in 2001 [9, 10, 11].
They proposed a linear construction algorithm of an extended suffix vector
then another linear algorithm to transform an extended suffix vector into
a more space economical compact suffix vector. We propose an on-line
linear algorithm for directly constructing a compact suffix vector. Not
only we show that it is possible to directly build a compact suffix vector
but we will also show that this on-line construction can be faster than the
construction of the extended suffix vector. Finally, we present an efficient
method for computing maximal repeats using suffix vectors.

1 Introduction

Indexes are data structures that are extensively used in pattern matching. An
index for a string y contains all the substrings of y. The most famous index
data structure is the suffix tree. A suffix vector is an alternative data structure
to a suffix tree. A suffix vector, for a string ¥, can store, in a reduced space, the
same information as a suffix tree of y. Suffix vectors have been introduced by
Monostori et al. ([9, 10, 11]) in order to detect plagiarism. The extended suffix
vector of the string y consists of a succession of boxes located at some positions
on the string y. These boxes are equivalent to the internal nodes (so called forks)
of the suffix tree of y. Extended suffix vectors can be compacted. Compact
suffix vectors can save up to 33% of the nodes compared to extended vectors
[9]. Unfortunately, Monostori et al. only gave an on-line linear construction
algorithm of an extended suffix vector and a linear algorithm to transform an
extended suffix vector into a compact suffix vector.

In [13], we show the correspondance between suffix trees and suffix vectors.
In [1], the authors show the correspondance between suffix trees and suffix
arrays. Then compact suffix vectors could probably be built from suffix arrays
but not in an on-line way.

In this article, we propose an on-line linear algorithm for directly building a
compact suffix vector. This algorithm allows to deal with longer strings. More-
over, we show that this construction can be done faster than the construction of

*This work has been partially supported by the project “Informatique Génomique” of the
program “MathStic” of the french CNRS.

311

312 Construction of compact suffix vectors and maximal repeats

the extended suffix vector. The main advantage of the suffix vector compared
to the suffix tree resides in the linear location of the boxes. We use this fact to
present an efficient linear method for computing maximal repeats using compact
suffix vectors.

This article is organized as follows: Section 2 introduces the different nota-
tions, quickly recalls suffix trees and defines suffix vectors; Section 3 presents the
new on-line construction algorithm of a compact suffix vector; Section 4 gives
a linear method for computing maximal repeats with suffix vectors; Section 5
contains our conclusions and perspectives.

2 Notations and definitions

Let A be a finite alphabet. Throughout the article we will consider a string
y € A* of length n: y = y[0..n — 1]. We assume without lost of generality that
the symbol y[n — 1] does not occur in y[0..n — 2].

2.1 Suffix tree
2.1.1 Definition

The suffix tree 7 (y) of y is a well-known linear size index structure that contains
all the suffixes of y. It can be constructed by considering the suffix trie of y (tree
containing all the suffixes of y which edges are labeled by exactly one symbol)
where all internal nodes with only one child are removed and where remaining
successive edge labels are concatenated. The leaves of the suffix tree contain
the starting position of the suffix they represent.

The total length of all the suffixes of y can be quadratic, the linear size of the
suffix tree is thus obtained by representing edge labels by pairs (position, length)
referencing substrings y[position..position + length — 1] of y. The terminator
y[n — 1] ensures that no suffix of y is an internal substring of y and thus 7 (y)
has exactly n leaves. Each internal node has at least two children, leading to
at most m — 1 internal nodes and thus to a linear number of nodes overall.
This also gives a linear number of edges. Each edge requires a constant space.
Altogether the suffix tree 7 (y) of y can be stored in linear size. Figure 1 presents
7T (aatttatttatta$).

There exist several suffix tree construction algorithms. For a string y built on
an alphabet A, two algorithms run in time O(|y| xlog |A|) [8, 15] that extensively
use the notion of suffix links. One algorithm runs in time O(|y|) [4] when the
alphabet is considered as a set of integers.

Each node p of the tree is identified with the substring obtained by concate-
nating the labels on the unique path from the root to the node p. We represent
the existence of the edge from node p to node ¢ with label (4, £) by d(p, (¢,£)) = q.
We also consider TARGET(p, a) which is defined as d(p, (¢, ¢)) for y[i] = a and
¢>1. Fora€e Aand u e A* if au is a node of T (y) then s(au) = wu is the
suffix link of the node au.

2.1.2 Ukkonen’s algorithm

Ukkonen’s algorithm ([15]) is a linear on-line algorithm for constructing the
suffix tree of a string. The suffix tree is initialized with y[0] the first symbol
of the string. The algorithm consists then of n — 1 phases, phase i consists in
building the suffix tree of y[0..i] from the suffix tree of y[0..i — 1]. A phase is

,_,.\Eh'se Prieur and Thierry Lecroq 313

Figure 1: Suffix tree of the string aatttatttatta$. All the labels of the edges
are given here in both forms: (p, ¢) and y[p..p+ ¢ — 1] in order to help the reader
except for the label of the edge from node 0 to leaf 0 which corresponds to the
substring atttatttatta$. Suffix links are represented by dashed arrows.

split in extensions. During the extension j of the phase i, the suffix y[j + 1..i] of
y[0..7] is inserted in the tree. The last substring inserted in the tree is denoted
by w = y[j + 1..i — 1]. The algorithm is based on the three following rules.

Rule 1 If, in the tree, the path corresponding to w leads to a leaf, it is sufficient
to extend the label of the path with y[i].

Rule 2 There exists a path in the tree labeled by w which does not lead to a
leaf and such that it is impossible to continue it with y[i]. In this case,
we have to create an edge labeled by y[i] going out from w, if w does not
correspond to a node it has to be added in the tree.

Rule 3 There exists a path in the tree labeled by w which does not lead to a
leaf and such that we can continue it with y[é], this means that y[j 4+ 1..4]
is already in the tree.

Once a leaf is created, it always remains a leaf, so Rule 1 does not require
any processing. Let j, be the number of the last created leaf corresponding
to the suffix y[je..n — 1] of y. Phase ¢ of the Ukkonen’s algorithm consists of
extensions from j, 4+ 1 to the smallest j > j, such that Rule 3 applies, since if
y[j + 1..4] is already in the tree so are all its suffixes.

There exist already several adaptations of Ukkonen’s algorithm for different
kind of suffix trees [3, 6].

2.2 Suffix vector
2.2.1 Extended suffix vector

The suffix vector V(y) of y is a linear representation of the suffix tree 7 (y)
consisting of a succession of boxes. These boxes contain the same information

314 Construction of compact suffix vectors and maximal repeats

as the nodes of the tree, so that all the repeated substrings of y are represented
in V(y). We will now give a description of the suffix vectors.

Let Bj be the box of the suffix vector at position j of the string y. The box
B; is considered as an array with £ > 1 lines and 3 columns. It has been shown
in [13] that each line of a box in the suffix vector is equivalent to an internal
node in the suffix tree. In the present article, we will use node indifferently for
a node of the tree and for a line of the vector. Each node p of the vector is
identified with the substring obtained by concatenating the labels on the unique
path from the root to the node p.

The first column of a box B; contains the depth of the node, the second
one contains the natural edge. The natural edge of a node p in a box Bj is the
position of the box containing the node ¢ such that TARGET(p, y[j + 1]) = q.

The third column contains the edge lists L. Each edge of L is stored as a
pair (b, e) where b is the beginning of the edge (the position of the first symbol)
and e the end of the edge (the position of the box containing the target node).
So a box is characterized by: B[h,0] = depth, B[h, 1] = ne, B[h,2] = L for each
0<h<Ek-1

Inside a box, there are implicit suffix links from node represented by depth
d to node represented by depth d — 1. Monostori pointed out in [9] that the
depths in a box are continuous.

The root of the suffix tree is represented by a specific box in the suffix vector.
The extended suffix vector of aatttatttatta$ is given in Figure 2.

Root 0-0,2—-2,13 — 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t t tattas$

|-
37|12 — 13
2|7(5 — 5

\ y 7|13[12 — 13
| 6[13|12 — 13
. 1315 =5 Shais T ia
4‘13 12 — 13
1|13]|2 — 3,13 — 13

Figure 2: Suffix vector of aatttatttatta$. Suffix links are represented by
dashed arrows.

2.2.2 Compact suffix vector

A suffix vector can be compacted when, for lines i1 and hs of the box at position
Jj, the edge list of line hy is included in the edge list of line ho: Bj[h1,2] C
B,lh2,2]. In this case, we just need to store the list of the line hy and create
a link from line hy to line hy. When the edge lists of each line of the box
Bj are the same, B; is called a reduced box. In a reduced box, we store the

Elise Prieur and Thierry Lecroq 315

deepest node and the number of nodes represented in the box. The compaction
method is presented in Figure 3. Nodes are ordered from the largest depth to
the smallest depth. Nodes of a box are partitioned into groups: two nodes are
in the same group if they have exactly the same edges. Figure 4 presents the
compact version of the suffix vector of Figure 2.

3 On-line construction of a compact suffix vec-
tor

The construction algorithm of the suffix vector is based on Ukkonen’s algorithm
for suffix trees (cf. 2.1.2). The main difference in our algorithm is that we are
able to skip some extensions when we add an edge to a box. The following
proposition explains the general situation. Let B, be the box at position p, let
y[p — d+ 1..p] be the substring representing the node of depth d in B, to which
the edge will be added, let D be the depth of the deepest node in B, and let nb
be the number of nodes in By, 1 < nb < D.

Proposition 1 allows to add the edge beginning by y[i] only once for a group
of nodes.

Proposition 1 If an edge is added to the node h of depth d in a box B, this
edge will be added to all the nodes of depth smaller than d in the group of nodes
of node h.

Proof

Let d’ be the smallest depth of the nodes in the group of nodes of h. All the
nodes of depth within d and d’ have exactly the same edges. Considering the
box at position p, we know that p is the end position of the first occurrence of
each substring y[p’..p] such that p —d +1 < p’ < p—d' + 1, the length of these
substrings are smaller or equal to d.

We assume that during the phase i, we add an edge labeled by yli] to the
node y[p —d + 1..p]. This means that ¢ is the position of the first occurrence of
the substring y[p — d + 1..p]y[¢] and that y[p — d + 1..p] has no edge beginning
by y[i]. Therefore, we can say that ¢ is the position of the first occurrences of
all the substrings y[p'..ply[i] with p —d+1 < p’ < p—d + 1. So the edge
beginning by y[i] will be added to each node of depth within d and d’ of B,

during consecutive extensions of the phase . O
depths
Rule B d
d-1
Rule A
d-2
riee o8 —=l Jod Jod]

Figure 3: Rules of compaction of a box. Rule A shows that nodes with exactly
the same edge list can be merged into the same group of nodes. Rule B shows
that some consecutive nodes can share some edges.

316 Construction of compact suffix vectors and maximal repeats

Root 0-0,2—-2,13 —13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t tt]tatta$

-
3|7|12 — 13
2|75 — 5

l 1\3\!—5 ‘ |7\13\1‘2—13 ‘

1132 — 3,13 — 13

Figure 4: Compact suffix vector of the string aatttatttatta$.

When an edge is added to the node h of depth d in a box By, if h is not the
deepest node of its group, the group has to be split into two. In the case where
B, is a reduced box, it has to be extended. The edge labeled by y[i] is added
only at the beginning of the edge list of the group node of h.

The next corollary allows to add the edge beginning by y[i] only once for a
reduced box and to jump from extension k — D + 1 to extension k — D + nb
during the phase .

Corollary 1 If an edge is added to the deepest node of a reduced boz, this edge
will be added for each node of the box, then the box is still reduced.

The algorithm BUILDSV (y) presented in Figure 5 builds on-line the compact
suffix vector of y. It is an adaptation of Ukkonen’s algorithm for suffix vectors.
The on-line construction of compact suffix vectors is similar to the on-line con-
struction of suffix trees except for the algorithm ADDEDGE (see Figure 6) called
by algorithm BUILDSV (y). The algorithm ADDEDGE implements the results
of Prop. 1 and Coro. 1.

All the algorithms use the following global variables whose meaning is shown
in Figure 7:

e k is the length of w = y[j, + 1..i — 1];

e ¢ is the position of the node representing v which is the longest prefix of
w corresponding to a node;

e 71 is the beginning position of v which is such that w = wwv;

e p is the end position of the first occurrence of w.

We now describe briefly the functions used in the construction algorithm
given in Figure 5. The function INITROOT initializes the root with an edge
labeled by y[0]. The function FASTSCAN is the same function as in the con-
struction algorithms of the suffix tree (McCreight [8], Ukkonen[15]). The only
difference is that we look through a suffix vector instead of a suffix tree. The
function ADDTOROOT tests if there is an edge by y[i] going out from the root.

Elise Prieur and Thierry Lecroq 317

BUILDSV (y)
1 ka q77°7j£7p —0,-1, _]-707 -1
2 INITROOT()
3 fori—1ton—1do

> Phase 4
4 | fork «— —1
5 while j, < i do
> Extension jy
6 FASTSCAN()
7 if / =0 then
>je=i—1
8 ADpDTOROOT(7)
9 else if (y[i] # y[p + 1]) and
(A node w in B, or (3 node w and A edge by y[i])) then
> Rule 2
10 if A node w in Bp,s then
11 | ADDNODE(i)
12 else ADDEDGE(7)
13 fork «— UPDATESL (fork)
14 else Rule 3
15 if y[i] = y[p+ 1] then
16 | p—p+1
17 else p « beginning position of the edge by y|i]
18 fork <« UPDATESL(fork)
19 break

Figure 5: On-line construction algorithm of the compact suffix vector of
the string y. jg is incremented in functions ADDTOR0OOT, ADDNODE and
ADDEDCGE.

If it does not exist, we add it and increment j; by 1. The function ADDNODE
tests if there is a box at position p in the vector with a node representing w.
If there is not, we create this box with the correct node. If the box at position
p exists and is a reduced box then if the length of w is larger than the depth
of the deepest node in B, we have to extend the box before adding the node,
otherwise we just have to increment the number of nodes in the box. If the box
is extended, we add the node. Adding a node in an extended box means adding
a line in it. In the function UPDATESL, the suffix link of the fork becomes the
node w and then the fork becomes w where w is the last created or modified
node. All these functions are adapted to suffix vectors and behave as in the
Ukkonen’s algorithm.

The function ADDEDGE in Figure 6 implements the results of Prop. 1 and
Coro. 1. It adds the edge beginning by y[¢] to the edge list of the node w of depth
kin B,. If B, is a reduced box and its deepest node is w, Coro. 1 allows B, to
remain reduced and to add only once the edge (lines 4 and 10 of the algorithm
in Figure 6). If B, is reduced and w is not its deepest node then B, has to be
extended and the edge has to be added once for all the nodes in the group of w.
If B, is not reduced, then the edge has to be added once for all the nodes in the
group of w. In all cases, « is set with the number of nodes in the group of w, jy
is incremented by « enabling to skip the o — 1 next extensions. This requires to
follow « suffix links (line 11). The function ADDEDGENODES(¢) adds the edge

318 Construction of compact suffix vectors and maximal repeats

to all the nodes of depth smaller or equal to d in the group of w, this group is
split if necessary. The function ADDEDGEBOX () adds the edge to the edge list
of the reduced box at position p.

We can then give the following result.

ADDEDGE(?)
1 if B, is reduced then
if k£ = depth of the deepest node in B, then
ADDEDGEBOX(7)
o« number of nodes in B,
else EXTENDBOX(B,,)
ADDEDGENODES(7)
« < number of nodes between w and
the node of smallest depth in the group of w
else ADDEDGENODES(7)
« < number of nodes between w and
the node of smallest depth in the group of w
10 jo — jo +
11 g < s%(q)

N OO W N

© o

Figure 6: Algorithm ADDEDGE that implements the result of Prop. 1 and
Coro. 1. it enables to skip some extensions.

Theorem 1 The algorithm BUILDSV (y) builds on-line the compact suffix vec-
tor of a string y in linear time.

Proof The correctness and the time complexity of the algorithm come from
the fact that the construction is based on Ukkonen’s algorithm and on Prop. 1
and Coro. 1. O

4 Maximal repeats

The problem of detecting repeated substrings is important in many fields such as
computational biology. A maximal repeat is a repeat which cannot be extended

0 e }
Yl | w []
Yl | w [|
Y| | U | [] |

r p
yL] u | |
q T
k

Figure 7: Global variables used in the extension j, of phase i of algorithms
BuiLDSV and ADDEDGE.

Elise Prieur and Thierry Lecroq 319

to the left or the right. We will first recall some previous results on maximal
repeats and then show the relation between maximal repeats and suffix vectors.

4.1 Definitions

Definition 1 A mazimal repeat in a string y is a substring u such that there
exist at least two occurrences of w, ajuby and asuby with ai,as,b1,by € A,
aq 7& as and bl 75 bQ.

Let us denote by Endpos,(z) = {k | y = zwy[k + 1..n — 1]} the set of end
positions of the substring x in .

Definition 2 Let 21 and xo be two strings on A*, the equivalence relation R,
is defined by x1 Ry 2 <= Endpos,(v1) = Endpos,(x2).

Definition 3 The equivalence class Clg, () of the string x for relation R, is
defined by Clg,(x) = {2’ | 2’ Ry z}.

Raffinot has shown in [14] the next theorem.

Theorem 2 ([14]) A substring is a mazimal repeat if and only if it is the
longest string in an equivalence class.

4.2 Suffix vectors and maximal repeats

The next proposition shows the relation between the equivalence classes and the
boxes of the suffix vector.

Proposition 2 Each substring of a class Clg, (x) is represented in the same
boz of the suffix vector. This is the box at position p such that p = min{k | k €
Endpos, ()}

Proof All the substrings of an equivalence class have the same end positions.
A repeated substring is represented in a box of the suffix vector at position p
such that p is the end position of its first occurrence. Each substring of a class
have the same first end position. O

The next two results make the link between a maximal repeat and the cor-
responding line in the suffix vector.

Proposition 3 In a boz, if consecutive nodes have exactly the same edges, only
the deepest one represents a maximal repeat.

Proof If some nodes are in the same box with exactly the same edges, this
means that they have exactly the same number of occurrences and end positions,
so they are in the same equivalence class. Applying Theorem 2 and Prop. 2, we
can affirm that only the deepest of these nodes represents a maximal repeat. [

Corollary 2 The substring represented by the deepest node of a reduced bozx is
a mazimal repeat and it is the only one in this boz.

Proof Each substring represented in a reduced box have exactly the same
edges. By Prop. 3, we can say that the substring represented by the deepest
node of the reduced box is a maximal repeat and it is the only one in the box.
O

Raffinot [14] has demonstrated Prop. 4 for the compact suffix automaton. A
proof of this proposition for the suffix trees is also given in [5]. Here, we show
it for the compact suffix vector.

320 Construction of compact suffix vectors and maximal repeats

Proposition 4 The number of maximal repeats of a string y of length n is
within 0 and n — 2.

Proof A suffix tree can have at most n — 1 internal nodes including the root.
As lines of a suffix vector are equivalent to internal nodes of a suffix tree, it can
have at most n — 2 lines in boxes. A maximal repeat must be represented by a
node. So, there are at most n — 2 maximal repeats in a string of length n. O

4.3 Computing maximal repeats with suffix vector

Proposition 3 and Coro. 2 give a method for computing the maximal repeats
in a string y with its suffix vector. For 0 < j < n, each box B; of the vector
is looked up only once and the deepest node of each box represents a maximal
repeat. If B; is a reduced box, it is the only one, in the other case each deepest
node of a group of nodes is a maximal repeat.

Ezxample 1

In the suffix vector of Figure 4, the boxes at positions 0, 2, 5 and 7 are
reduced boxes so only their deepest nodes are maximal repeats: a, t, tta and
atttatt. The box at position 3 is extended and the nodes have different edges,
so the two nodes represent maximal repeats: att, tt.

Ezxample 2

The compact suffix automaton of gtagtaaac is given in [14]. The suffix
vector of gtagtaaac$ is given in Figure 8. The box at position 2 has two nodes
with the same edges, therefore they are in the same equivalence class Clgz,(gta),
so gta is a maximal repeat. The other line of By and the box at position 6 give

two equivalence classes Clr, (a) and Clz (aa), so a and aa are maximal repeats.
Root ’0—2,1—2,2—2,8—9,9—9

g t gt aaact$
I

9|6
9| ~
9|6 — 6,8 -9

9

Figure 8: Suffix vector of gtagtaaac$, the second line of the box at position 2
has the same edge as the first line.

It should be noted that the presented method allows to compute maximal
repeats but not directly the maximal repeats in pairs.

5 Conclusion and perspectives

This article presents an on-line linear algorithm for building the compact suffix
vector for a string. This avoids the construction of the extended suffix vector
which is more space consuming. Moreover, the on-line construction of the com-
pact suffix vector enable to skip some extensions. This structure is very helpful
for computing maximal repeats in strings.

A practical study for measuring the space and time performances of compact
suffix vectors remains to be done in order to compare them to suffix trees [7, 12]
and LZ-indexes [2].

Elise Prieur and Thierry Lecroq 321

References

1]

[2]

[10]

[11]

M. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53-86, 2004.

D. Arroyuelo and G. Navarro. Space-efficient construction of LZ-index. In
X. Deng and D.-Z. Du, editors, Proceedings of the 16th International Sym-
posium on Algorithms and Computation, volume 3827 of Lecture Notes in
Computer Science, pages 1143-1152, Sanya, Hainan, China, 2005. Springer
Verlag.

R. Clifford and M. Sergot. Distributed and paged suffix trees for large ge-
netic databases. In R. A. Baeza-Yates, E. Chévez, and M. Crochemore, edi-
tors, Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching, volume 2676, pages 70-82, Morelia, Michocdn, Mexico, 2003.
Springer Verlag.

M. Farach. Optimal suffix tree construction with large alphabets. In Pro-
ceedings of the 38th IEEE Annual Symposium on Foundations of Computer
Science, pages 137-143, Miami Beach, FL, 1997.

D. Gusfield. Algorithms on strings, trees and sequences: computer science
and computational biology. Cambridge University Press, 1997.

S. Inenaga and M. Takeda. On-line linear-time construction of word suffix
trees. In Proceedings of the 17th Annual Symposium on Combinatorial
Pattern Matching, Barcelona, Spain, 2006. to appear.

S. Kurtz. Reducing the space requirements of suffix trees. Software —
Practice €& Experience, 29(13), 1999.

E. M. McCreight. A space-economical suffix tree construction algorithm.
Journal of Algorithms, 23(2):262-272, 1976.

K. Monostori. Efficient Computational Approach to Identifying Overlapping
Documents in Large Digital Collections. PhD thesis, Monash University,
2002.

K. Monostori, A. Zaslavsky, and H. Schmidt. Suffix vector: Space-and-
time-efficient alternative to suffix trees. In CRPITS ’02: Proceedings of the
25th Australasian Computer Science Conference, volume 4, pages 157-166,
Darlinghurst, Australia, 2002. Australian Computer Society, Inc.

K. Monostori, A. Zaslavsky, and 1. Vajk. Suffix vector: A space-efficient suf-
fix tree representation. In P. Eades and T. Takaoka, editors, Proceedings of
the 12th International Symposium on Algorithms and Computation, volume
2223 of Lecture Notes in Computer Science, pages 707718, Christchurch,
New Zealand, 2001. Springer Verlag.

J. I. Munro, V. Raman, and S. S. Rao. Space efficient suffix trees. In
V. Arvind and R. Ramanujam, editors, Proceedings of the Foundations of
Software Technology and Theoretical Computer Science, volume 1530 of
Lecture Notes in Computer Science, pages 186-196, Chennai, India, 1998.
Springer Verlag.

322 Construction of compact suffix vectors and maximal repeats

[13] E. Prieur and T. Lecroq. From suffix trees to suffix vectors. In J. Holub
and M. Simanek, editors, Proceedings of the Prague Stringology Conference
"05, pages 37-53, Prague, Czech Republic, 2005.

[14] M. Raffinot. On maximal repeats in strings. Information Processing Letters,
80(3):165-169, 2001.

[15] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249—-
260, 1995.

[16] P. Weiner. Linear pattern matching algorithm. In Proceedings of the 14th
Annual IEEE Symposium on Switching and Automata Theory, pages 1-11,
Washington, DC, 1973.

