
Traces of term-automatic graphs

Antoine Meyer

Institute of Mathematical Sciences, Chennai, India

ameyer@imsc.res.in

Abstract

In formal language theory, many families of languages are defined using grammars or finite ac-
ceptors like pushdown automata and Turing machines. For instance, context-sensitive languages are
the languages generated by growing grammars, or equivalently the languages accepted by Turing
machines whose work tape size is proportional to that of their input.

A few years ago, a new characterization of context-sensitive languages as the path languages of
rational graphs (infinite graphs defined by sets of finite-state transducers) was established. We inves-
tigate a similar characterization in the more general framework of graphs defined by term transducers.
In particular, we show that the languages of term-automatic graphs between regular sets of vertices
coincide with the languages accepted by alternating linearly bounded Turing machines, which form
the complexity class ETIME. As a technical tool, we also introduce an arborescent variant of tiling
systems, which provides yet another characterization of these languages.

Introduction

In classical language theory, context-sensitive languages are defined as the languages generated by growing
grammars, and as such they are one of the families of the well-known Chomsky hierarchy [Cho59].
Later, they were also characterized as the languages accepted by linearly space-bounded Turing machines
[Kur64], i.e. Turing machines whose runs on any input word of length n use at most k · n cells of their
work tape, where k is a constant. In [LS97], it was shown by direct simulations of linearly bounded
machines that context-sensitive languages also coincide with the languages accepted by tiling systems.
In 2001, Morvan and Stirling [MS01] provided yet another characterization of this family as the set of
path languages of rational graphs [Mor00], a family of infinite graphs whose vertices are words and whose
sets of edges are defined using finite transducers. This result was later extended in [Ris02] to the more
restricted families of automatic graphs (Cf. [KN95]), and even to synchronous rational graphs when an
infinite number of initial and final vertices are considered (for a summary, see also [MR05]). In a way,
this provides a “forward”, automata-based characterization of context-sensitive languages, as opposed for
instance to grammars, or to linearly bounded machines which are essentially a two-way mechanism.
To prove the inclusion of context-sensitive languages in the set of path languages of these families of
graphs, the above-mentioned papers use a normal form for growing grammars, due to Penttonen [Pen74].
In [CM06], these results were reformulated using simpler proof techniques based on tiling systems. Be-
yond the benefit of mere simplification, this permitted the investigation of interesting sub-cases, in par-
ticular concerning deterministic context-sensitive languages or rational graphs with various structural
constraints.
The aim of this work is to extend the results in both [LS97] and [CM06] to a more general family of
languages, which complexity theorists call ETIME. This family corresponds to those languages accepted
by alternating linearly bounded machines, or equivalently by deterministic Turing machines working in
time less than 2c.n, where n is the size of the input word and c is a constant. This family of languages

285

286 Traces of term-automatic graphs

sits in-between context-sensitive and recursively-enumerable languages in the Chomsky hierarchy. The
results we obtain are two new characterizations of ETIME, first as the languages accepted by arborescent
tiling systems and second as the traces of infinite graphs defined by various families of term transducers,
namely term-synchronous and term-automatic (or tree-automatic) graphs [BG00].
This paper is organized as follows. After recalling relevant definitions and notations in Section 1, we
introduce our notion of arborescent tiling systems in Section 2 and prove that they characterize ETIME.
Finally, using this technical tool, we extend previously mentioned proofs over rational graphs to the
family of term-automatic graphs in Section 3 before concluding with ongoing perspectives.

1 Notations

Words. A word u over alphabet Σ can be seen as a tuple (a1, . . . , an) of elements of Σ, usually written
a1 . . . an. Its i-th letter is denoted by u(i) = ai. The set of all words over Σ is written Σ∗. The number
of letters occurring in u is its length, written |u| (here |u| = n). The empty word is written ε. The
concatenation of two words u = a1 . . . an and v = b1 . . . bm is the word uv = a1 . . . anb1 . . . bm. The
concatenation operation extends to sets of words: for all A, B ⊆ Σ∗, AB stands for the set {uv | u ∈
A and v ∈ B}.

Terms. Let F =
⋃

n≥0 Fn be a finite ranked alphabet, each Fn being the set of symbols of F of arity
n, and X be a finite set of variables disjoint from F (all sets Fn are also disjoint). We denote the arity of
a symbol f ∈ F by a(f). Variables are considered of arity 0. The set of finite first-order terms on F with
variables in X , written T (F, X), is the smallest set including X such that f ∈ Fn ∧ t1, . . . , tn ∈ T (F, X)
implies ft1 . . . tn ∈ T (F, X). Words can be seen as terms over a ranked alphabet whose symbols have
arity exactly 1 and whose last symbol is a variable or a special constant. To make the reading easier,
ft1 . . . tn will sometimes be written f(t1, . . . , tn).

Trees. A finite ordered tree t over a set of labels Σ is a mapping from a prefix-closed set Dom(t) ⊆ N∗

into Σ. Elements of Dom(t) are called positions, and for every p ∈ Dom(t), t(p) is the label of the node
at position p. The node at position ε is called the root of the tree, and nodes at maximal positions (i.e.
positions x such that @y 6= ε, xy ∈ Dom(t)) are called leaves, and nodes which are not leaves are called
internal.
Any term t over a ranked alphabet F and set of variables X can be represented as a finite ordered ranked
tree, whose leaves are labeled with constants in F0 or variables in X and whose internal nodes are labeled
with symbols whose arity is equal to the number of children of that node. In that case, the domain of t,
additionally to being prefix-closed, also has the following properties:

1. ∀p ∈ Dom(t), t(p) ∈ Fn≥1 =⇒ {j | pj ∈ Dom(t)} = [1, n],

2. ∀p ∈ Dom(t), t(p) ∈ F0 ∪ X =⇒ {j | pj ∈ Dom(t)} = ∅.

In such a ranked tree, position pi with i ∈ N always denotes the i-th child of the node at position p.
Conversely, any finite ordered tree t labeled over Σ can be represented as a ranked tree t′, and hence as
a term, simply by mapping each node label a to a corresponding symbol (a, n) in the alphabet Σ × N,
where n is the number of children of the considered node, and by renumbering all positions such that the
domain of t′ verifies properties 1 and 2 above. In the following, we will not distinguish terms from trees.
When considering a finite ordered tree as a term, the above transformations will be left implicit.

Finite automata and regular sets. A finite tree (or term) automaton is a tuple A =< Q, F, q0, δ >,
where Q is a set of control states, F a ranked alphabet, q0 the initial set and δ the set of transition rules
of A of the form qf ′q1 . . . qn with a(f) = n. A run of A over a tree t is a tagging of all nodes of t by

Antoine Meyer 287

control states such that the root is tagged with q0 and the children of a node labeled by f are tagged
with q1 . . . qn if and only if qf → q1 . . . qn ∈ δ. A run over t is successful is for every leaf labeled by a

and tagged with control state q, there exists a rule qa → ε ∈ δ, and we say that t is accepted. The set of
trees accepted by any automaton is called its language, and all such languages are said to be regular.

Graphs. A labeled, directed and simple graph is a set G ⊆ V × Σ × V where Σ is a finite set of labels
and V an arbitrary countable set. An element (s, a, t) of G is an edge of source s, target t and label a,

and is written s
a
→
G

t or simply s
a
→ t if G is understood. An edge with the same source and target is

called a loop. The set of all sources and targets of a graph form its support VG, its elements are called
vertices. A sequence of edges (s1

a1→ t1, . . . , sk
ak→ tk) with ∀i ∈ [2, k], si = ti−1 is called a path. It is

written s1
u
→ tk, where u = a1 . . . ak is the corresponding path label. Vertex s1 is called the origin of the

path, tk its destination. A path is called a cycle if its origin and destination are the same vertex. The
language, or set of traces of a labeled graph between two sets I and F of vertices is the set of all words
w such that there exists a path labeled by w whose origin is in I and destination in F .

Alternating Turing machines. A Turing machine is a tuple M =< Γ, Σ, Q, q0, F, δ > where Σ is
the input alphabet, Γ the tape or work alphabet (with Σ ⊆ Γ), Q is a set of states among which q0 is
an initial state and F is a set of final states, and δ is a set of transition rules of the form pA → qBε

where p, q ∈ Q, A, B ∈ Γ ∪ {�} (� being a blank symbol not in Γ) and ε ∈ {+,−}. Configurations of
M are denoted as words upv, where uv is the content of the work tape (where prefix and suffix blank
symbols are omitted), p is the current control state and the head scans the cell containing the first letter
of v. A transition d = pA → qBε is enabled on any configuration c of the form upAv, and yields a new
configuration d(c) = uBqv′ (with v′ = v if v 6= ε, or � otherwise) if ε = + and u′qCBv (with u′C = u if
u 6= ε or u′ = ε and C = � otherwise) if ε = −. If d is not enabled on c, then d(c) is left undefined.

An alternating Turing machine M is defined similarly, with the exception that rules are of the form
d = pA →

∧

i∈[1,n] qiBiεi. The alternation degree n of d is written a(d), by analogy with the notion of

arity. For all i ≤ a(d), we write di the non-alternating transition pA → qiBiεi. A run of M on input word
w is a tree whose root is labeled by configuration q0w, and such that the children of any node labeled
by configuration c are labeled by c1, . . . , cn if and only if there exists a transition d ∈ δ enabled on c

such that a(d) = n and ∀i ∈ [1, n], ci = di(c). Such a run is successful if all of its leaves are labeled by
configurations whose control state is in F .

Linearly bounded machines. A Turing machine is linearly bounded if on every run the total work
tape space it uses is at most proportional to the length of its input word. By standard coding techniques,
it is sufficient to consider machines where the usable tape is limited to the cells initially containing the
input word. This may be enforced by forbidding transition rules to rewrite the blank symbol � into
anything else.

The languages of non-alternating linearly bounded machines form a complexity class noted SPACE(O(n)).
It was shown by Kuroda [Kur64] that this class is equivalent to that of context-sensitive languages. Adding
alternation, one obtains the more general class ASPACE(O(n)). By classical complexity theory results
[CKS81], it is also equivalent to the class DTIME(2O(n)), also called ETIME.

2 Arborescent tiling systems

To facilitate the proofs of our main results, this section provides an important technical tool, which
was also central to some versions of the corresponding proofs on rational graphs and context-sensitive
languages [CM06].

288 Traces of term-automatic graphs

Tiling systems were originally defined to recognize or specify picture languages, i.e. sets of two-dimensional
words on finite alphabets [GR96], called local picture languages. However, by only looking at the words
contained in the first row of each picture, one obtains a context-sensitive language [LS97]. In this section,
we extend this result to an arborescent extension of tiling systems. We prove that the word languages
characterized by this new formalism are precisely the languages accepted by alternating linearly bounded
machines.

2.1 Definitions

Instead of planar pictures, we consider so-called arborescent pictures, which are to ordinary pictures what
terms are to words. Intuitively, an arborescent picture can be seen as a book with partially open pages.

Definition 1 (Arborescent picture). Let Γ be a finite alphabet, an arborescent picture p over Γ is
a mapping from the set X × [1, m] to Γ, where X ⊆ N+

∗ is a finite, prefix-closed set of sequences of
positive integers (called positions in the framework of trees) and m is a positive integer called the width
of p. The set Dom(p) = X × [1, m] is the domain of p. The set of arborescent pictures over X × [1, m] is
written AP(X, m).

Again, we assume that X is not only prefix-closed but also left-closed, i.e. ∀i > 0, ui ∈ X =⇒ ∀j <

i, uj ∈ X . Arborescent pictures of domain X × [1, m] are isomorphic to ordered trees of domain X

with nodes labeled over the set Γm. As such, if m = 1 they are isomorphic to Γ-labeled ordered trees.
Arborescent pictures whose set of positions X is a subset of 1∗ are ordinary, planar pictures. For a given
picture p ∈ AP(X, m), we write fr(p) the word w ∈ Γm such that w(i) = p(ε, i), which we call the (upper)
frontier of p.

Definition 2 (Subpicture). For any arborescent picture p ∈ AP(X, m), the sub-picture p′ = p|x,i,Y,n

of p at offset o = (x, i) with x ∈ X and i ∈ [0, m− 1] is the arborescent picture of domain Y × [1, n] such
that Y is prefix- and left-closed and ∀(y, j) ∈ Y × [1, n], (xy, i+j) ∈ X× [1, m] and p′(y, j) = p(xy, i+j).

We can now define arborescent tiling systems, which allow the specification of sets of arborescent pictures.
Similarly to planar tiling systems, in order to be able to recognize meaningful sets of pictures, we first
add a border or frame to each picture using a new symbol #.

Definition 3 (Framed picture). Let p be an arborescent picture of domain X × [1, m] over Γ and
6∈ Γ a new symbol, we define the #-framed picture p# as the picture of domain X ′ × [1, m + 2] with
X ′ = {ε} ∪ {1}X ∪ X ′′ and X ′′ = {1x1 | x ∈ X ∧ @y ∈ N, xy ∈ X} such that

p#(ε, i) = # for all i ∈ [1, m + 2],

p#(1x, 1) = # and p#(1x, m + 2) = # for all x ∈ X,

p#(x, i) = # for all x ∈ X ′′, i ∈ [1, m + 2],

p#(1x, i + 1) = p(x, i) for all x ∈ X, i ∈ [1, m + 2].

An arborescent tiling system is then defined as a set of tiling elements of width and height 2, which can
then be combined to form larger framed pictures.

Definition 4 (Arborescent tiling system). An arborescent tiling system (or ATS) S is a triple
(Γ, #, ∆), where Γ is a finite alphabet, # 6∈ Γ a frame symbol and ∆ is a set of arborescent tiling
elements (tiles) in {Γ̄ × Γ̄ × Γ̄n × Γ̄n | n > 0} with Γ̄ = Γ ∪ {#}.

Each tiling element d ∈ ∆ is of the form d = (A, B, C̄, D̄) with A, B ∈ Γ̄ and C̄, D̄ ∈ Γ̄n for some positive
integer n. We define additional notations to conveniently manipulate tiling elements. Let d = (A, B, C̄, D̄)
with C̄ = C1 . . . Cn and D̄ = D1 . . . Dn, we write a(d) = n to denote the arity of d, and di with i ∈ [1, a(d)]
to denote the (planar) tile (A, B, Ci, Di).

Antoine Meyer 289

Note that any tiling element d = (A, B, C̄, D̄) of arity n is isomorphic to an arborescent picture pd of
domain X × [1, 2], where X = {ε, 1, . . . , n} and pd(ε, 1), pd(ε, 2), pd(i, 1) and pd(i, 2) are respectively
equal to A, B, C̄(i) and D̄(i) (for all i ∈ [1, n]). In general we do not distinguish pd from d and write
simply d.
Well-formed tiling systems should obey a certain number of restrictions over their set of tiles, regarding
in particular the occurrences of the frame symbol # inside tiles. For all d = (A, B, C̄, D̄),

1. (A, B) = (#, #) =⇒ a(d) = 1 ∧ (C1, D1) 6= (#, #),

2. ∃i, Ci = # =⇒ A = # ∧ ∀i, Ci = #,

3. ∃i, Di = # =⇒ B = # ∧ ∀i, Di = #,

4. A 6= # ∧ B 6= # =⇒ (Ci = # ⇐⇒ Di = #).

Before defining the set of pictures and the word language accepted by an arborescent tiling system, we
define for any arborescent picture p of domain X × [1, m] over Γ the set T(p) of tiling elements of p

as the set of all sub-pictures p|x,j,X′,2 of p such that x is an internal position in X , j ∈ [1, m − 1] and
X ′ = {ε} ∪ {i′ > 0 | xi′ ∈ X}.

Definition 5 (Language of a tiling system). The set of arborescent pictures accepted by an arbores-
cent tiling system S = (Γ, #, ∆) is the set P(S) = {p ∈ AP | T(p#) ⊆ ∆}. The (word) language accepted
by S is the set L(S) = {w ∈ Γ∗ | ∃p ∈ P(S), w = fr(p)} of all upper frontiers of pictures of P(S).

2.2 Languages of arborescent tiling systems

In this section, we prove that arborescent tiling systems and alternating linearly bounded machines
define the same family of languages, namely ASPACE(O(n)), also equal as previously mentioned to
DTIME(2O(n)) = ETIME.

Proposition 6. For every arborescent tiling system S, there exists an alternating linearly bounded ma-
chine M such that L(M) = L(S).

Proof. Let S = (Γ, #, ∆) be an arborescent tiling system. We build an alternating linearly bounded
machine M = (Γ, Γ′, Q, q#, f, δ) accepting L(S). Its work alphabet Γ′ is the union of all Γ̄k for k ∈
[1, a(S)], where Γ̄ = Γ ∪ {#} and a(S) = max{a(d) | d ∈ ∆}. The control states and transition rules of
M are (only) those appearing in the following description of M ’s behavior.

1. M starts in configuration [q#w], where w ∈ Γ∗ is the input word. For all (#, #, C, D) ∈ ∆ with
D 6= #, δ contains a rule qCD → qDD+. For every tile (#, #, C, #) ∈ ∆ and positive integer

n ≤ a(S), M can reverse its head with a rule qC] → p1
#
#n]−. This first sweep checks that w is a

possible upper frontier of a picture accepted by S.

2. In the next sweep, M generates at once a possible n-tuple of next rows based on the current
configuration and the tiles in ∆. For all Ā = A1 . . . Am, C̄ = C1 . . . Cn and D̄ = D1 . . . Dn with
m, n ∈ [1, a(S)] and for all k ∈ [1, m], δ contains the rules

pk
#
#nĀ → pk

Ak

C̄
C̄− for all (Ak, #, C̄, #n) ∈ ∆,

pk
Bk

D̄
Ā → pk

Ak

C̄
C̄− for all (Ak, Bk, C̄, D̄) ∈ ∆,

pk
Bk

D̄
[→

∧

i∈[1,n]

qi
#
#l [+ for all (#, Bk, #n, D̄) ∈ ∆, l ∈ [1, a(S)].

Rules of the latter type perform a head reversal with universal branching at the end of a sweep.
On each new computation branch, proceed to the next step.

290 Traces of term-automatic graphs

3. The last row generated on component k consists of a sequence of frame symbols # if and only if
the last symbol written to the right of the left border symbol is #.

If this is the case on the current computation branch, reach accepting state f with rules of the
form qk

#
#nB̄ → fB̄+ for all m ∈ [1, a(S)], k ∈ [1, m] and B̄ = B1 . . . Bm with Bk = #. Otherwise,

proceed to the next step.

4. This step is the right-to-left counterpart of step 2. For all B̄ = B1 . . . Bm, C̄ = C1 . . . Cn and
D̄ = D1 . . . Dn with m, n ∈ [1, a(S)] and for all k ∈ [1, m], δ contains the rules

qk
#
#nB̄ → qk

Bk

D̄
D̄+ for all (#, Bk, #n, D̄) ∈ ∆,

qk
Ak

C̄
B̄ → qk

Bk

D̄
D̄+ for all (Ak , Bk, C̄, D̄) ∈ ∆,

qk
Ak

C̄
] →

∧

i∈[1,n]

pi
#
#l]− for all (Ak , #, C̄, #n) ∈ ∆, l ∈ [1, a(S)].

As previously, rules of the latter type perform a head reversal with universal branching at the end
of a sweep. On each new computation branch, proceed to the next step.

5. Conversely to step 3, if the last symbol written on component k to the left of the right border
symbol is #, then reach accepting state f with rules pk

#
#nĀ → fĀ− for all m ∈ [1, a(S)], k ∈ [1, m]

and Ā = A1 . . . Am with Ak = #. Otherwise, proceed to step 2.

Steps 2 to 5 are repeated until all computation branches have reached the accepting state f . It then only
remains to check that this happens if, and only if, the input word w is accepted by S, which is tedious
but straightforward.

Proposition 7. For every alternating linearly bounded machine M , there exists an arborescent tiling
system S such that L(S) = L(M).

Proof. Let M = (Σ, Γ, Q, q0, F, δ) be an alternating linearly bounded machine. We build an arborescent
tiling system S = (Γ′, #, ∆) such that L(S) = [L(M)], where [and] are two new symbols. We suppose
without loss of generality that every rule d of M is given under the form d = pA → q1B1µ1∧ . . .∧qnBnµn.
By di we refer to the fragment pA → qiBiµi of d, and we let a(d) = n.

Tiling elements of S consist in the following sets. First, we need a set of tiles of arity 1 to set the input
word as upper frontier. For all a, b ∈ Σ, ∆ contains

(#, #, #, [), (#, #, [, a), (#, #, a, b), (#, #, b,]), (#, #,], #).

In the second row we then need to encode the initial configuration [q0w] of M . Thus for all a, b ∈ Σ, ∆
contains the arity 1 tiles

(#, [, #, [
(⊥)
l), ([, a, [

(⊥)
l , a(⊥)

q0
), (a, b, a(⊥)

q0
, b(⊥)

r),

(a, b, a(⊥)
r , b(⊥)

r), (b,], b(⊥)
r ,](⊥)), (], #,](⊥)

r , #),

where ⊥ denotes a dummy transition of arity considered as 1. Subsequent tiles check the consistency of
the previously applied transition d throughout a row, and simulate the application of a new transition d′

of M . Arity n tiles are used when d′ is of alternation degree n. For all A, B, B′, C, C ′ ∈ Γ and d ∈ δ, ∆

Antoine Meyer 291

thus contains

(#, [(d)
p , #n, ([

(d′)
l)n) for all d′ = (p[→ q1[+ ∧ . . . ∧ qn[+) ∈ δ,

(#, [
(d)
l , #n, Y) for all d′ ∈ δ with a(d′) = n, where ∀i ∈ [1, n],

Yi =

[(d′)
qi

or [
(d′)
l if d′i = pC → qiC

′−

[
(d′)
l otherwise,

(A
(d)
l , B

(d)
l , (A

(d′)
l)n, Y) for all d′ ∈ δ with a(d′) = n, where ∀i ∈ [1, n],

Yi =

B(d′)
qi

or B
(d′)
l if d′i = pC → qiC

′−

B
(d′)
l otherwise,

(A
(d)
l , B(d)

p , X, Y) for all d′ ∈ δ with a(d′) = n, where ∀i ∈ [1, n],

Xi = A(d′)
qi

and Yi = B′
r
(d′)

if d′i = pB → qiB
′−

Xi = A
(d′)
l and Yi = B′

l
(d′)

if d′i = pB → qiB
′+

as well as all dually defined tiling elements of the form

(](d)
p , #, (](d

′)
p)n, #n) , ([

(d)
l , #, X, #n), (A(d)

r , B(d)
r , X, (B(d′)

r)n) and (A(d)
p , B(d)

r , X, Y).

Furthermore, if the last simulated transition ends in a final control state, tiles of ∆ should allow one
to generate a lower border: we thus have copies of all the previous rules with X = Y = #, with the
additional constraint that transition d reaches an accepting state of M .
It remains to prove that one indeed has L(S) = [L(M)], which can be done by induction on the length of
computations. Removing the border symbols from L(S) is then a simple exercise.

From Propositions 6 and 7, we deduce the announced theorem.

Theorem 8. The languages accepted by arborescent tiling systems form the complexity class ASPACE(O(n)) =
DTIME(2O(n)).

3 Traces of term-automatic graphs

We now turn to the main result of this paper, which is the study of languages of graphs characterized
by automata-defined binary relations over terms, and in particular term-automatic graphs. We define
these relations and the graphs they generate, then present a two-steps proof that the languages of term-
automatic graphs indeed coincide with ASPACE(O(n)). First, we establish this result for the simpler
term-synchronous graphs in Section 3.2, then generalize it to term-automatic graphs in Section 3.3.

3.1 Definitions

Let s = f(s1 . . . sm) and t = g(t1 . . . tn) be two terms over some ranked alphabet F . We define the overlap
[st] of s and t as the following term over domain Dom(s) ∪ Dom(t) and extended alphabet (F ∪ {⊥})2

(each element (f, g) of this alphabet being written simply fg):

[st] = fg([s1t1] . . . [sktk]) with k = max(m, n)

and ∀i ∈ [m, k], j ∈ [n, k], si = tj = ⊥,

[s⊥] = f⊥([s1⊥] . . . [sm⊥]),

[⊥t] = ⊥g([⊥t1] . . . [⊥tn]).

292 Traces of term-automatic graphs

This notation is extended to sets in the natural way. We can now define term-automatic and term-
synchronous relations.

Definition 9. A binary relation R is term-automatic if the term language [R] = {[st] | (s, t) ∈ R} is
regular. If furthermore for all (s, t) ∈ R, Dom(s) = Dom(t), it is called term-synchronous.

In other words, a term-synchronous is a term-automatic relation which only associates pairs of terms over
the same domain (terms with the same structure). Both families of relations are closed under relational
composition.

Proposition 10. Let R1 and R2 be two term-automatic (resp. term-synchronous) relations, the relation
R1 ◦ R2 is also term-automatic (resp. term-synchronous).

Term-automatic and term-synchronous relations are syntactical extensions of the corresponding families
of relations over words. As such, they also define extended families of graphs.

Definition 11. A Σ-graph G is term-automatic (resp. term-synchronous) if it is isomorphic to a graph

{u
a
→ v | a ∈ Σ, (u, v) ∈ Ra}, where (Ra)a∈Σ is a family of term-automatic (resp. term-synchronous)

relations.

3.2 Term-synchronous graphs

Proposition 12. For every arborescent tiling system S, there exists a term-synchronous graph G and
regular sets I and F such that L(G, I, F) = L(S).

Proof. Let G = (Ra)a∈Σ be a term-synchronous graph, and I, F two regular sets of vertices of G. We
build an arborescent tiling system S = (Γ, #, ∆) such that L(S) = L(G, I, S).
For all a ∈ Σ, let Ai be a finite top-down term automaton accepting [Ra], and AI , AF similar automata
for I and F respectively. For every a ∈ Σ, we also define relations RI◦a = Id I ◦Ra and Ra◦F = Ra ◦ IdF ,
where IdL is a shorthand notation for the identity relation over some set L. Let also AI◦a and Aa◦F be
two automata accepting the languages [RI◦a] and [Ra◦F] respectively, as defined in the previous section.

For every path t0
a1→ t1 . . .

an→ tn in G with t0 ∈ I , tn ∈ F and ∀i, Dom(ti) = X , we want S to accept an
arborescent picture p such that

• p|ε,0,X,1 is isomorphic to the term [(ρ0), where [is considered a unary symbol and ρ0 is an accepting
run of AI◦a over [t0t1],

• p|ε,i,X,1 is isomorphic to the term ai(ρi) for all i ∈ [2, n − 1], where ρi is an accepting run of Aai

over [ti−1ti]

• p|ε,n+1,X,1 is isomorphic to the term](ρn+1), where] is considered a unary symbol and ρn+1 is an
accepting run of Aa◦F over [tn−1tn],

and conversely, S should only accept all such pictures which correspond to paths in G between I and F .
These conditions are sufficient for S to accept the word language L(G, I, F). To ensure they indeed hold,
we define ∆ as containing the following tiles. For the leftmost columns of pictures, we simulate for every
a the possible runs of automaton AI◦a with tiles

(#, #, #, a),

(#, a, #, px) if p initial in AI◦a,

(#, px, #k , p1x1 . . . pkxk) if px → p1x1 . . . pkxk ∈ AI◦a.

(#, px, #, #) if px → ε ∈ AI◦a,

Antoine Meyer 293

For pairs of intermediate columns inside a picture, we simulate two automata side by side while checking
for consistency. Hence for all a, b ∈ Σ, we have tiles

(#, #, a, b),

(a, b, px, qy) with p initial in Aa, q initial in Ab

and x = fg and y = gh for some f, g, h,

(px, qy, p1x1 . . . pkxk, q1y1 . . . qkyk) if

{

px → p1x1 . . . pkxk ∈ Aa

qy → q1y1 . . . qkyk ∈ Ab

and ∀i ∈ [0, k], xi = fg and yi = gh for some f, g, h

(px, qy, #, #) if px → ε ∈ Aa, qy → ε ∈ Ab

and x = fg and y = gh for some f, g, h.

Finally, for the rightmost columns we have the following set of tiles, which is analogous to the leftmost
case. For every letter b, ∆ contains

(#, #, b, #),

(b, #, qy, #) if q initial in Ab◦F ,

(qy, #, q1y1 . . . qkyk, #k) if qy → q1y1 . . . qkyk ∈ Ab◦F .

(qy, #, #, #) if qy → ε ∈ Ab◦F .

It then only remains to check that given this set of tiles, S indeed enjoys the properties cited above, and
hence accepts L(G, I, F).

Proposition 13. For every term-synchronous graph G and regular sets I and F there exists an arbores-
cent tiling system S such that L(S) = L(G, I, F).

Proof. Let S = (Γ, #, ∆) be an arborescent tiling system. We build a term-synchronous graph G such
that L(S) = L(G, I, F) for some regular sets I and F . In the following, symbol # is overloaded to make
the notation less cumbersome, and represents functional symbols of varying arities, which can be deduced
from the context. In particular, we write #X for a given prefix-closed set X the term of domain X whose
nodes are all labeled with #.

Let Ra, a ∈ Σ, be the binary relation between all terms #(s) and #(t) (i.e. s and t with an additional
unary # at the root) such that a labels the root of t and for a given p ∈ P (S), either s = p|ε,i,X,1 and
t = p|ε,i+1,X,1 for some i > 0 or s = #X and t = p|ε,0,X,1.

Let G be the graph defined by (Ra)a∈Σ, we show that G is term-synchronous by constructing automata
(Aa)a∈Σ such that L(Aa) = [Ra] = {[st] | (s, t) ∈ Ra}. For all a, Aa has transitions:

q0## → qAB,1 if (#, #, A, B) ∈ ∆,

qĀB̄,iAB → qC̄D̄,1 . . . qC̄D̄,k if d = (Ai, Bi, C̄, D̄) ∈ ∆, k = a(d),

Ai = Ā(i) and Bi = B̄(i),

qĀB̄,iAiBi → ε if (Ai, Bi, #, #) ∈ ∆,

Ai = Ā(i) and Bi = B̄(i).

We define I as the regular set of all terms labeled over {#}, and F as the set of all possible rightmost
columns of pictures accepted by S. This set of terms is accepted by the automaton AF whose transitions

294 Traces of term-automatic graphs

are:

q0# → qA,1 if (#, #, A, #) ∈ ∆,

qĀ,iAi → qC̄,1 . . . qC̄,k if d = (Ai, #, C̄, #k) ∈ ∆ and Ai = Ā(i),

qĀ,iAi → ε if (Ai, #, #, #) ∈ ∆ and Ai = Ā(i).

By construction of each of the Aa, of I and of AF , there exists a path in G labeled by a word w between
a vertex in I and a vertex in F if and only if the vertices along that paths are the successive columns of
a picture in P (S) whose frontier is w.

Combining Propositions 12 and 13, we obtain the following result concerning the family of languages
accepted by term-synchronous graphs.

Theorem 14. The languages of term-synchronous graphs between regular sets of initial and final vertices
are the languages accepted by arborescent tiling systems.

3.3 Term-automatic graphs

In this section, we show that the more general family of term-automatic graphs defines the same family
of languages as their synchronous counterparts.

Proposition 15. For every term-automatic graph G and regular sets of terms I and F , there exists a
term-synchronous graph G′ and regular sets I ′ and F ′ such that L(G′, I ′, F ′) = L(G, I, F).

Proof. Let G be a term-automatic graph defined by a family (Ra)a∈Σ of automatic relations and I, F be
two regular languages, each Ra being accepted by an automaton Aa and I, F by AI and AF respectively.
We define a synchronous graph G′ = (R′

a)a∈Σ and two regular sets I ′ and F ′ such that L(G, I, F) =
L(G′, I ′, F ′). Let Γ be a ranked alphabet, we define alphabet Γ′ as Γ′ = Γ0 ∪ Γn with Γ′

0 = #0 and
Γ′

n = Γ ∪ #n, where n is the maximal arity of symbols in Γ. Let φ be a mapping from T (Γ) to 2T (Γ′)

such that for any term t ∈ T (Γ),

φ(t) = {t′ ∈ T (Γ′) | Dom(t) ⊂ Dom(t′), ∀p ∈ Dom(t), t′(p) = t(p)

and ∀p ∈ Dom(t′) \ Dom(t), t′(p) ∈ {#0, #n}.

In other words, to any term t, φ associates the set of all terms obtained by “padding” t with silent
symbols #0 and #n. This mapping is extended to sets of terms in the natural way. Note that, given any
t′ ∈ F (Γ′), there exists at most one term t ∈ T (Γ) such that t′ ∈ φ(t).
We now define, for every a ∈ Σ, the relation R′

a as {(s′, t′) | (s, t) ∈ Ra, s′ ∈ φ(s), t′ ∈ φ(t) and Dom(s′) =
Dom(t′)}. This synchronous relation can be characterized by a finite tree automaton A′

a defined from Aa.
For every transition px → q1 . . . qk in Aa, with 0 ≤ k ≤ n, A′

a has a transition p′x → q′1 . . . q′k(q#)n−k, as
well as transitions q##n → (q#)n and q##0 → ε. The initial state of A′

a is q′0. We also let I ′ = φ(I)
and F ′ = φ(F), for which automata can be similarly defined from AI and AF .

Let G′ be the term-synchronous graph defined by (R′
a)a∈Σ. For every path i′ = t′0

a1→ t′1 . . . t′n−1
an→ t′n = f ′

in G′ with i′ ∈ I ′ and f ′ ∈ F ′, by definition of G′ and φ, and for all i ∈ [1, n], there must exist unique

ti−1 and ti such that ti−1
ai→ ti ∈ G, t′i−1 ∈ φ(ti−1) and t′i ∈ φ(ti). Also, by definition of I and F , t0 ∈ I

and tn ∈ F . Hence a1 . . . an ∈ L(G, I, F), and more generally L(G′, I ′, F ′) ⊆ L(G, I, F).

Conversely, consider any path i = t0
a1→ t1 . . . tn−1

an→ tn = f in G with i ∈ I and f ∈ F . One can easily
see that for some sufficiently large domain X , for all i ∈ [0, n] there exists t′i ∈ φ(ti) with Dom(t′i) = X .
From there, it is not difficult to conclude that there is a path in G′ labeled by a1 . . . an, hence that
L(G, I, F) ⊆ L(G′, I ′, F ′).

Antoine Meyer 295

Remark 16. It can easily be shown that for every term-automatic graph G and regular sets I and F , there
exists a term-automatic graph G′ and finite sets I ′ and F ′ such that L(G′, I ′, F ′) = L(G, I, F). Indeed,
for any regular I and F and finite I ′ and F ′ the relations I ′ × I and F ×F ′ are automatic. Hence, since
term-automatic relations are closed under composition, this can be used to build G′ from G.

4 Conclusion

We have presented the proof that ETIME, the class of languages accepted by alternating linearly bounded
machines, can also be characterized as the sets of first rows of pictures accepted by arborescent tiling
systems, as well as the sets of path labels of term-automatic graphs between regular or finite sets of
initial and final vertices. However, to fully extend the existing results on rational graphs, one would have
to investigate graphs defined by a family of term transducers at least as general as word transducers.
Ongoing work focuses on extending the construction in Section 3.3 to graphs defined by linear top-
down tree transducers with regular look-ahead and ε-transitions. Further points of interest concern the
extension of other results from [CM06] to term-automatic graphs, in particular regarding the traces of
structural restrictions of these graphs (finite or bounded degree, single initial vertex), as well as the
similar study of other complexity classes or families of languages around context-sensitive languages.

296 Traces of term-automatic graphs

References

[BG00] A. Blumensath and E. Grädel. Automatic structures. In Proceedings of the 15th IEEE Sympo-
sium on Logic in Computer Science (LICS 2000), pages 51–62. IEEE, 2000.

[Cho59] N. Chomsky. On certain formal properties of grammars. Information and Control, 2:137–167,
1959.

[CKS81] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–133,
1981.

[CM06] A. Carayol and A. Meyer. Context-sensitive languages, rational graphs and determinism. Logical
Methods in Computer Science, to appear (preliminary version available at http://www.liafa.
jussieu.fr/~ameyer/), 2006.

[GR96] D. Giammarresi and A. Restivo. Handbook of Formal Languages, volume 3, chapter Two-
dimensional languages. Springer, 1996.

[KN95] B. Khoussainov and A. Nerode. Automatic presentations of structures. In International Work-
shop on Logical and Computational Complexity (LCC ’94), pages 367–392. Springer, 1995.

[Kur64] S. Kuroda. Classes of languages and linear-bounded automata. Information and Control,
7(2):207–223, 1964.

[LS97] M. Latteux and D. Simplot. Context-sensitive string languages and recognizable picture lan-
guages. Information and Computation, 138(2):160–169, 1997.

[Mor00] C. Morvan. On rational graphs. In Proceedings of the 3rd International Conference on Founda-
tions of Software Science and Computation Structures (FoSSaCS 2000), volume 1784 of Lecture
Notes in Computer Science, pages 252–266. Springer, 2000.

[MR05] Christophe Morvan and Chloé Rispal. Families of automata characterizing context-sensitive
languages. Acta Informatica, 41(4-5):293–314, 2005.

[MS01] C. Morvan and C. Stirling. Rational graphs trace context-sensitive languages. In Proceedings of
the 26th International Symposium on Mathematical Foundations of Computer Science (MFCS
2001), volume 2136 of Lecture Notes in Computer Science, pages 548–559. Springer, 2001.

[Pen74] M. Penttonen. One-sided and two-sided context in formal grammars. Information and Control,
25(4):371–392, 1974.

[Ris02] C. Rispal. The synchronized graphs trace the context-sensitive languages. In Proceedings of
the 4th International Workshop on Verification of Infinite-State Systems (INFINITY 2002),
volume 68 of Electronic Notes in Theoretical Computer Science, 2002.

