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Abstract. A language L ⊆ A∗ is literally idempotent in case that
ua2v ∈ L if and only if uav ∈ L for each u, v ∈ A∗, a ∈ A. Such
classes result naturally by taking all literally idempotent languages in a
classical (positive) variety or by considering a certain closure operator.
We initiate their systematic study. Various classes of such languages can
be characterized using syntactic methods. A starting example is the class
of all finite unions of B∗

1B∗

2 . . . B∗

k where B1, . . . , Bk are subsets of a given
alphabet A.
MSC 2000 Classification: 68Q45 Formal languages and automata

1 Introduction

Papers by Straubing [10] on C-varieties and Ésik and el. [4], [5] on literal varieties
of languages enable us to consider new significant classes of languages. Due to
the result by Kunc [7] we also have equational logic for those classes.

(Positive) varieties of languages corresponding to pseudovarieties of (ordered)
idempotent semigroups/monoids are not very important from the point of lan-
guage theory. This is far from being the case for languages corresponding to
pseudovarieties of literally idempotent homomorphisms.

Most of our classes result by considering intersections of well-known classical
(positive) varieties with literally idempotent languages. Our new classes nicely
fit into the table in Section 8 by Pin [9]. We characterize languages from certain
classes of languages in various ways. More precisely we describe the languages
which are literally idempotent and which belong to the level 1/2, level 1, level
3/2 respectively. We also consider other interesting classes of languages, e.g.
languages which are finite unions of the languages of the form B∗

0B
∗
1 . . . B

∗
k ,

where k ∈ N0 and B0, . . . , Bk are subsets of a given alphabet.
We also describe all literally idempotent languages over two element alphabet

and we present canonical forms of the corresponding regular expressions.
Notice that the motivation for studying literally idempotent languages also

comes from the linear temporal logic. The formulas of LTL without the “next”
operator determine literally idempotent languages. We give a logical characteri-
zation of languages from two of our classes.

? Both authors acknowledge the support of the Grant no. 201/06/0936 of the Grant
Agency of the Czech Republic.
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The paper is organized as follows. In Section 2 we recall known results and
techniques obtained by syntactic methods. In Section 3 we present several new
classes of language. In Section 4 introduce literally idempotent languages and
their basic properties. In Section 5 we prove results concerning intersections of
literally idempotent languages with well-known classes (level 1/2, 1, 3/2, right-
trivial languages, finite languages). In Section 6 we comment on literally idem-
potent languages over a two element alphabet. The last section contains several
remarks dealing with the relationship to the linear temporal logic.

2 Preliminaries

Valuable treatments on syntactic methods in language theory are books by
Almeida [1], Pin [8] and his chapter [9].

Let M (resp. O) be the class of all surjective homomorphisms from free
monoids over non-empty finite sets onto finite (ordered) monoids. A class V ⊆ M
is a literal pseudovariety if it is closed with respect to the homomorphic images,
literal substructures and products of finite families – see Ésik and el. [4], [5]
or Straubing [10] for a more general notion of a C-pseudovariety. Similarly, we
define the literal pseudovarieties in the ordered case.

Let N = {1, 2, . . .} and N0 = N ∪ {0}. Let In, for n ∈ N, be the set of all
n-ary implicit operations for the class of finite monoids – see [1]. We write πM :
Mn → M for the realization of π ∈ In on a finite monoid M . A pseudoidentity
π = ρ, where π, ρ ∈ In, is literally satisfied in

(φ : A∗ →M) ∈ M

if ( ∀ a1, . . . , an ∈ A ) πM (φ(a1), . . . , φ(an)) = ρM (φ(a1), . . . , φ(an)) .

We write φ |=L π = ρ in this case.
Similarly, a pseudoinequality π ≤ ρ, where π, ρ ∈ In, is literally satisfied in

(φ : A∗ → (M,≤)) ∈ O

if ( ∀ a1, . . . , an ∈ A ) πM (φ(a1), . . . , φ(an)) ≤ ρM (φ(a1), . . . , φ(an)) .

We write φ |=L π ≤ ρ in this case.
Usually we fix an alphabet Σ = {x1, . . . , xn} of variables and we identify

a word u = xi1 . . . xik
∈ Σ∗ with the implicit operation uM (a1, . . . , an) =

ai1 . . . aik
, where M ∈ M, a1, . . . , an ∈ M . Examples of implicit operations

which are not of this form are uω, for u ∈ Σ+. We define

((xi1 . . . xik
)ω)M (a1, . . . , an) = aω ,

where a = ai1 . . . aik
and aω is the unique idempotent in the set {a, a2, a3, . . . }.

A special case of the main result of Kunc [7] follows.

Result 1 (Kunc) The literal pseudovarieties of homomorphisms onto finite
monoids are exactly the subclasses of M defined by the literal satisfaction of
sets of pseudoidentities.
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One can expect an analogous result in the ordered case – we do not need it
here, we only support it by examples.

By a quotient of L ⊆ A∗ we mean any set u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }
where u, v ∈ A∗.

A class of (regular) languages is an operator V assigning to each non-empty
finite set A a set V (A) of regular languages over the alphabet A.

Such a class is a positive variety if
(0) for each A, we have ∅, A∗ ∈ V (A),
(i) each V (A) is closed with respect to finite unions, finite intersections and
quotients, and
(ii) for each non-empty finite sets A and B and a homomorphism f : B∗ →
A∗, K ∈ V (A) implies f−1(K) ∈ V (B).

Adding the condition
(iii) each V (A) is closed with respect to complements,
we get a boolean variety.

A modification of (ii) to
(ii’) for each non-empty finite sets A and B and a homomorphism f : B∗ → A∗

with f(B) ⊆ A, K ∈ V (A) implies f−1(K) ∈ V (B)
leads to the notions of literal positive/boolean variety of languages.

Let L ⊆ A∗ be a regular language. Recall that the syntactic congruence ∼L

on A∗ is defined by

u ∼L v if and only if ( ∀ p, q ∈ A∗ ) ( puq ∈ L ⇐⇒ pvq ∈ L ) .

Further, the structure O (L) = A∗/ ∼L is called the syntactic monoid of L and
the mapping φL : A∗ → O (L), u 7→ u ∼L is the syntactic homomorphism.
Moreover, O (L) is implicitly ordered by

u ∼L ≤ v ∼L if and only if ( ∀ p, q ∈ A∗ ) ( pvq ∈ L =⇒ puq ∈ L ) .

We speak about the ordered syntactic monoid and the ordered syntactic homo-
morphism.

For a class V of languages, let

M (V ) = 〈 { φL : A∗ → O (L) | A non-empty finite , L ∈ V (A) } 〉

be the literal pseudovariety generated by the syntactic homomorphisms of mem-
bers of V , and conversely, for V ⊆ M,

V 7→ L (V), where (L (V))(A) = { L ⊆ A∗ | φL ∈ V } for each A .

Result 2 (Ésik and Larsen [5], Straubing [10]) The operators M and L

are mutually inverse bijections between the classes of literal boolean varieties of
languages and literal pseudovarieties of homomorphisms onto finite monoids.

Similarly as in Result 1 one can expect an ordered version of Result 2 – we
do not need it here, we only support it by examples.
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We recall certain classical positive varieties of languages – see [8], [9].
(i) The languages of the level 1/2 over A are exactly finite unions of languages

of the form
A∗a1A

∗a2 . . . akA
∗, k ∈ N0, a1, . . . , ak ∈ A . (1/2)

We denote this positive variety of languages by V 1/2 and it is known that
L ∈ V 1/2(A) iff ordered syntactic monoid of the language L satisfies the pseu-
doinequality x ≤ 1.

(ii) The languages of the level 1 over A are exactly the boolean combinations
of languages of the form (1/2) We denote this variety of languages by V 1 and it
is known that L ∈ V 1(A) iff the syntactic monoid of the language L is J -trivial,
i.e. it satisfies the pseudoidentities xω = xω+1 and (xy)ω = (yx)ω .

(iii) The languages of the level 3/2 over A are exactly finite unions of

B∗
0a1B

∗
1a2 . . . akB

∗
k , k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A . (3/2)

We denote this positive variety of languages by V 3/2 and it is known that
L ∈ V 3/2(A) iff the ordered syntactic monoid of the language L satisfies the
pseudoinequalities xωyxω ≤ xω for every x, y ∈ Σ∗ such that c(x) = c(y) (c(x)
is the set of all variables occurring in x).

(iv) We denote by R the positive variety of languages which can be written
as (disjoint) finite unions of languages of the form

B∗
0a1B

∗
1a2 . . . akB

∗
k , where

k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A, ai 6∈ Bi−1 for i = 1, . . . , k . (R)

The language L belongs to R iff its syntactic monoid is R-trivial, i.e. it satisfies
the pseudoidentity (xy)ωx = (xy)ω .

Finally, we consider two classes of +-languages together with the correspond-
ing pseudovarieties of semigroups.

(v) Finite languages generate the positive variety of languages consisting of
finite languages and full languages. This variety corresponds to the pseudova-
riety of ordered nilpotent semigroups with 0 being the greatest element. Such
semigroups are characterized by the following pseudoinequalities

xωy = xω = yxω, y ≤ xω .

(vi) The boolean variety of languages generated by the class of all finite
languages is the class consisting of finite and cofinite languages. This class cor-
responds to nilpotent semigroups.

3 New Natural Classes of Languages

In this paper we deal mainly with the following classes of languages (we will see
in the next sections that they are literally idempotent). Observe the similarities
with the classes of languages from Section 2.
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(i) Finite unions of languages

A∗a1A
∗a2 . . . akA

∗, k ∈ N0, a1, . . . , ak ∈ A, a1 6= a2 6= · · · 6= ak . (L 1/2)

(ii) Finite unions of languages

B∗
1B

∗
2 . . . B

∗
k , k ∈ N0, B1, . . . , Bk ⊆ A . (L 1/2 c)

(iii) Boolean combinations of languages of the form (L 1/2).
(iv) Finite unions of languages of the form

B∗
0a1B

∗
1a2 . . . akB

∗
k , k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A,

a1 6= a2 6= · · · 6= ak, a1 ∈ B1, . . . , ak ∈ Bk . (L 3/2)

(v) Finite unions of languages of the form

B∗
0a1B

∗
1a2 . . . akB

∗
k , k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A,

a1 6= a2 6= · · · 6= ak, B0 63 a1 ∈ B1 63 a2 ∈ · · · 63 ak ∈ Bk . (L R)

(vi) Finite unions of languages of the form

B∗
0a1B

∗
1a2 . . . akB

∗
k , k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A

a1 6= a2 6= · · · 6= ak, a1 ∈ B0 ∩ B1, . . . , ak ∈ Bk−1 ∩Bk . (L E)

(vii) Finite languages generate the literal positive variety of languages, de-
noted by N f , consisting of finite languages and full languages. This variety
corresponds to the variety of ordered monoids which result from nilpotent semi-
groups by adding units and which satisfy the pseudoinequality x ≤ 0. This means
L ∈ N f (A) iff

φL |=L uωx = uω, xuω = uω, x ≤ uω, for any u ∈ Σ+, x ∈ Σ .

(viii) The literal boolean variety of languages generated by the class of finite
languages is the class N consisting of finite and cofinite languages. This class
corresponds to nilpotent semigroups with the extra unit elements adjoined.

4 Literally Idempotent Languages

A regular language L over a finite non-empty alphabet A is literally idempotent if
its syntactic homomorphism φL : A∗ → O (L) satisfies the pseudoidentity x2 = x
literally, which means

( ∀ a ∈ A ) a2 ∼L a .

We denote this class of languages by L .
We can introduce a string rewriting system which is given by rewriting rules

pa2q → paq for any a ∈ A, p, q ∈ A∗. We say that a word u ∈ A∗ is a normal
form of a word w if it satisfies the properties

w →∗ u and (u→∗ v implies u = v ) .
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It is easy to see that this system is confluent and terminating. Consequently, for
any word w ∈ A∗, there is an unique normal form −→w ∈ A∗ of the word w. We
will denote by ∼ the equivalence relation on A∗ generating by the relation →∗.
In fact, this equivalence relation is a congruence of the monoid A∗.

For L ⊆ A∗ and u ∈ A∗, we write

u−1L = {w ∈ A∗ | uw ∈ L }, D = { u−1L | u ∈ A∗ } .

Classically, one assigns to L its (canonical) minimal automaton
D = (D , A, ·, L, F ) where D is the (finite) set of states,
a ∈ A acts on u−1L by (u−1L) · a = a−1(u−1L),
L is the initial state and Q ∈ D is a terminal state (i.e., an element of F ) if and
only if 1 ∈ Q.

A complete deterministic automaton A = (Q,A, ·, i, T ) is called literally
idempotent if for each q ∈ Q and a ∈ A we have q · a2 = q · a. Notice that
the class of all such (Q,A, ·)’s forms a q-variety in the sense of Ésik and Ito [4].

In what follows we are interested in literal positive/boolean varieties consist-
ing of literally idempotent languages. These varieties can be induced by classical
varieties in two natural ways. At first, for a class of languages C we can consider
the set of languages from C which are also literally idempotent languages, i.e.
the intersection C ∩L of the classes C and L . The second possibility is to con-
sider the following (closure) operator on languages. For any language L ⊆ A∗,
we define

L = {w ∈ A∗ | (∃u ∈ L)(u ∼ w) } which is {w ∈ A∗ | (∃u ∈ L)(−→u = −→w ) } .

Lemma 1. For K,L ⊆ A∗, we have :
(i) L is regular whenever L is regular,
(ii) K ∪ L = K ∪ L,
(iii) K ∩ L ⊆ K ∩ L.

Proof. (i) Considering the regular substitution ϕ : A∗ → A∗ defined by the rule
ϕ(a) = a+ for any a ∈ A, we can write L = ϕ(ϕ−1(L)). Then we can apply
Theorem 4.4. from [12] saying that the family of regular languages is closed
under regular substitutions and inverse regular substitutions.

(ii) and (iii) are trivial observations. ut

Also the following is obvious.

Lemma 2. For a regular L ⊆ A∗, the following statements are equivalent :
(i) L is literally idempotent,
(ii) L = L,
(iii) ∼ ⊆ ∼L,
(iv) the (canonical) minimal DFA for L is literally idempotent,
(v) ( ∀ u ∈ A∗, a ∈ A ) (a2)−1(u−1L) = a−1(u−1L),
(vi) L is a (disjoint) union (not necessarily finite !) of the languages of the

form
a+

1 a
+

2 . . . a
+

k , k ∈ N0, a1, . . . , ak ∈ A, a1 6= a2 6= · · · 6= ak .
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For a class of languages C , we can consider the class of literally idempotent
languages C where C (A) = { L | L ∈ C (A) } for each A. Clearly, the following
holds.

Lemma 3. Let C be a class of languages. Then :
(i) A class C is closed under union whenever C is closed under union.
(ii) C ∩ L ⊆ C .

5 Varieties of Literally Idempotent Languages

Our main results consist in syntactic characterizations of certain classes of lan-
guages – see Propositions 1, 2 and 4, together with the following result – see
Propositions 1, 2, 3, 4, 5.

Theorem 1. For the class V ∈ {V 1/2,V
c
1/2,R ,V1,V 3/2} we have V ∩ L = V .

On the contrary, the following examples show that V need not be a (positive)
literal variety if V is a (positive) literal variety.

Example 1. We consider the class N f . Now N f ∩L consists of full languages,
the empty language and the unit language, i.e. (N f ∩L )(A) = {∅, {ε}, A∗}. It is
an easy observation that this literal variety is given by the literal pseudoidentity
x = y.

On the other hand, ∅, {ε}, A∗ ∈ N f (A) and a language L 6∈ {∅, A∗} over A
belongs to N f (A) iff L is a finite union of languages of the form a+

1 a
+

2 . . . a
+
n

where a1, . . . , an ∈ A, a1 6= a2 6= · · · 6= an (for n = 0 we mean the language
{ε} ). This implies that N f is not a literal positive variety of languages, because
N f is not closed under inverse literal homomorphic images. If we consider the
literal positive variety of languages generated by N f then it is easy to see that
L belongs to < N f >plv (A) if and only if L is a finite union of languages
of the form B+

1 B
+

2 . . . B
+
n where {B1, B2, . . . , Bn} is a partition of a subset of

the alphabet A (i.e. different Bi’s are disjoint) and B1 6= · · · 6= Bn. One can
show that this positive variety is given by the literal satisfaction of the following
pseudoidentities and pseudoinequalities

x2 = x, uωvx = uωvy, xvuω = yvuω, x ≤ uω ,

for all u, v ∈ Σ+ such that x, y ∈ c(u), x, y ∈ Σ .

Example 2. We can also consider the variety N . Now

(N ∩ L )(A) = { ∅, {ε}, A+, A∗ }

Moreover, if the language L over A is cofinite then L ∈ {A+, A∗}. From this
reason N (A) = N f (A) ∪ {A+} and again it is not a literal variety.

Now, we will study the new classes from Section 3. We start with the variety
V 1/2. For a word u = a1a2 . . . ak, a1, . . . , ak ∈ A, we denote

Lu = A∗a1A
∗a2 . . . akA

∗

– the set of all words which contain the word u as a subword.
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Proposition 1. For a language L over A, the following are equivalent :
(i) L is a finite union of languages of the form (L 1/2),
(ii) L ∈ (V 1/2 ∩ L )(A),
(iii) the syntactic homomorphism φL : A∗ → O (L) of the language L satisfies

the pseudoinequalities x ≤ 1 and x2 = x literally,
(iv) L ∈ V 1/2(A).

Proof. ”(i) =⇒ (ii)”: If the language L is a finite union of languages of the form
(L 1/2) then it belongs to V 1/2(A) and we will check that it is also a literally
idempotent language. Indeed, for L = A∗a1A

∗a2 . . . akA
∗ where a1 6= · · · 6= ak,

we have a−1

1 L = L + A∗a2A
∗a3 . . . akA

∗ and consequently a−2

1 L = a−1

1 L; for
a ∈ A, a 6= a1 we have a−1L = L and a−2L = a−1L follows.

”(ii) ⇔ (iii)” is clear because φL satisfies the pseudoinequality x ≤ 1 literally
iff O (L) satisfies this pseudoinequality in the classical sense.

”(ii) =⇒ (iv)” follows from Lemma 3.
”(iv) =⇒ (i)”: If L ∈ V 1/2(A) then L is a finite union of languages of the

form Lu. We prove that Lu is of the form (L 1/2).
First, we claim that Lu = L−→u . The inclusion Lu ⊆ L−→u is trivial and Lu ⊆ L−→u

follows. Now, assume that w ∈ L−→u then there is a word s ∈ L−→u such that
w ∼ s. We define the word s|u| in such a way, that we replace any letter a in s

by a|u|, where |u| is a length of the word u. Because s contains the word −→u as a
subword, we can see that s|u| contains the word u. Hence w ∼ s|u| ∈ Lu and we

can conclude w ∈ Lu.
We proved that Lu = L−→u and because L−→u is of the form (L 1/2), i.e. it is

literally idempotent as we proved at the beginning of the proof, we have also
L−→u = L−→u which implies that Lu is of the form (L 1/2). ut

We prove now a similar theorem for the class V
c
1/2 (here V

c(A) = {A∗ \ L |
L ∈ V (A) } for each A). At first, we formulate the following technical lemma
which describes basic properties of languages of the form Lc

u.

Lemma 4. Let u, u1, . . . , uk, w ∈ A∗, k ∈ N, u = a1a2 . . . , ak, a1, . . . , ak ∈ A.
Then :

(i) w ∈ Lc
u ⇔ −→w ∈ Lc

u.

(ii) Lc
u = (A \ {a1})∗ a∗1 (A \ {a2})∗ a∗2 . . . a∗k−1

(A \ {ak})∗.

(iii) Lc
u1

∩ · · · ∩ Lc
un

= Lc
u1

∩ · · · ∩ Lc
un

.

Proof. (i) The implication ”⇐=” is trivial.
” =⇒ ” : If w ∈ Lc

u then there is a word v ∈ Lc
u such that w ∼ v. This means

that v does not contain the word u as a subword. Hence −→v does not contain the
word u as a subword too, i.e. −→w = −→v ∈ Lc

u.
(ii) We denote K = (A \ {a1})

∗ a∗1 (A \ {a2})
∗ a∗2 . . . a∗k−1

(A \ {ak})
∗ and

we will prove that Lc
u = K.

”⊆” : If w ∈ Lc
u then −→w ∈ Lc

u by (i). If we read −→w from left to right and look
for the first occurrence of a1 (if it exists) and then look for the first occurrence of
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a2 after this first occurrence of a1 (if it exists) and so on, we obtain the following
factorization of −→w :

−→w = w1a1w2a2 . . . alwl+1, where l < k, wi ∈ (A \ {ai})
∗ .

Hence −→w ∈ K and because K = K we have also w ∈ K.
”⊇” : Let w ∈ K. Then w = w1a

α1

1 w2a
α2

2 . . . a
αk−1

k−1
wk where wi ∈ (A \ {ai})∗

and we can also assume without the lost of generality that wi does not start with
the letter ai−1. Hence −→w = −→w1a1

−→w2a2 . . . ak−1
−→wk and one can check by induction

with respect to i that the word −→w1a1
−→w2a2 . . . ai−1

−→wi does not contain the word
a1 . . . ai as a subword. This implies that −→w ∈ Lc

u and w ∈ Lc
u follows by (i).

(iii) The inclusion ”⊆” is a trivial consequence of Lemma 1 (iii) and the
inclusion ”⊇” is a consequence of (i). Indeed, w ∈ Lc

u1
∩ · · · ∩ Lc

un
implies w ∈

Lc
ui

and −→w ∈ Lc
ui

, for i = 1, . . . , n, follows. Hence −→w ∈ Lc
u1

∩ · · · ∩ Lc
un

and

consequently w ∈ Lc
u1

∩ · · · ∩ Lc
un

. ut

Proposition 2. For a language L over A, the following are equivalent :
(i) L is a finite union of the languages of the form (L 1/2 c).
(ii) L ∈ (V c

1/2 ∩ L )(A).
(iii) The syntactic homomorphism φL : A∗ → O (L) satisfies the pseu-

doinequalities x2 = x and 1 ≤ x literally.
(iv) L ∈ V

c
1/2(A).

(v) L ∈ V 1/2

c
(A).

(vi) L is a finite intersection of the languages of the form (L 1/2 c).

Proof. ”(i) =⇒ (iii)”: Let L be a finite union of the languages of the form
(L 1/2 c). For any K = B∗

1B
∗
2 . . . B

∗
k and any a ∈ A we have a−1K = B∗

i . . . B
∗
k

where i is the smallest index with the property a ∈ Bi. Now we see that a−2K =
a−1K and moreover K ⊇ a−1K. ¿From this we can conclude a−2L = a−1L,
L ⊇ a−1L. The first observation implies L is literally idempotent and the second
one implies that a ≥ 1 holds in O (L) for any a ∈ A. In other words, the syntactic
homomorphism φL : A∗ → O (L) satisfies the pseudoinequalities x2 = x and
1 ≤ x literally.

As in the previous proof we have that (iii) is equivalent to (ii) and (ii) implies
(iv) by Lemma 3.

”(iv) =⇒ (vi)”: Let L ∈ V
c
1/2(A). Then L = R, where R ∈ V

c
1/2. So, Rc is a

finite union of the languages of the form A∗a1A
∗a2 . . . akA

∗, k ∈ N0, a1, . . . , ak ∈
A. This means that R is a finite intersection of the languages Lc

u. The language
L = R is an intersection of languages of the form Lc

u by (iii) in Lemma 4.
Moreover, any of these languages is of the form (L 1/2 c) by (ii) in the same
lemma.

”(vi) =⇒ (i)” is a consequence of the fact that any intersection of two
languages of the form (L 1/2 c) is a finite union of the languages of the form
(L 1/2 c).

So, we proved that the conditions (i) – (iv) and (vi) are equivalent. The
condition (v) is equivalent to those by Proposition 1. ut
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Proposition 3. For a language L over A, the following are equivalent :
(i) L is a finite union of languages of the form (L R).
(ii) L ∈ (R ∩ L )(A).
(iii) L ∈ R (A).

Proof. ”(i) =⇒ (ii)” is similar to the previous proofs.
”(ii) =⇒ (iii)” : Again by Lemma 3.
”(iii) =⇒ (i)” : If L ∈ R (A), then L = R, where R ∈ R . So, R is a

finite union of the languages of the form (R). We show that any such language
B∗

0a1B∗
1a2 . . . akB∗

k can be written as a finite union of languages of the form
(L R). We prove that any language of the form B∗

0a1B∗
1a2 . . . akB∗

k with the
set of “bad” indices { i | ai = ai+1 or ai 6∈ Bi } can be written as a union of
languages of the same form, but with the smaller set of “bad” indices. Hence we
can inductively rewrite any given language B∗

0a1B∗
1a2 . . . akB∗

k as a finite union
of languages of the form (L R).

Let K = B∗
0a1B∗

1a2 . . . akB∗
k be a language and i be such that ai = ai+1 or

ai 6∈ Bi.
First, assume that ai = ai+1. Then ai 6∈ Bi. If Bi = ∅ we can simple remove

B∗
i ai+1 from the expression of the language K. Otherwise we write the language

K as a union of certain languages Lc for c ∈ Bi ∪ {ai} as follows. The language
Lai

comes from our expression if we exchange the string aiB
∗
i ai+1 by ai, i.e.

Lai
= B∗

0a1B∗
1a2 . . . ai−1B∗

i−1
aiB∗

i+1
. . . akB∗

k .

This language consists of words from K which do not use letters from Bi. For
c ∈ Bi the language Lc comes from our expression if we exchange the part
aiB

∗
i ai+1 by aia

∗
i cB

∗
i ai+1, i.e.

Lc = B∗
0a1B∗

1a2 . . . ai−1B∗
i−1

aia∗i cB
∗
i ai+1B∗

i+1
. . . akB∗

k .

The language Lc consists of words from K which use letters from Bi and the
first such letter is c.

In the second case we have ai 6= ai+1 and ai 6∈ Bi and we can apply a similar
construction. ut

For a class V of languages we put :
V

d(A) = {Ld | L ∈ V (A) } – the class dual to V , where
Ld = { an . . . a1 | a1, . . . an ∈ L, a1, . . . , an ∈ A } – the language dual to L.

Corollary 1. V 1 ∩ L = V 1.

Proof. We have R ∩ L = R which has the dual version, i.e. R
d ∩ L = R

d. It
is well known that R ∩ R

d = V 1.
The inclusion V 1 ∩ L ⊆ V 1 follows from Lemma 3.
If L ∈ V 1(A) then L = L1 where L1 ∈ V 1(A). Hence L1 ∈ R (A), and

L1 ∈ R
d(A) and we obtain L = L1 ∈ R (A), L = L1 ∈ R

d(A). Now we use
previous theorem and obtain L ∈ (R ∩ L )(A) and L ∈ (R d ∩ L )(A). Hence
L ∈ (R ∩ R

d ∩ L )(A) = (V 1 ∩ L )(A). ut
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Proposition 4. For a language L over A, the following are equivalent :
(i) L is a boolean combination of languages of the form (L 1/2).
(ii) L is a boolean combination of the languages of the form (L 1/2 c).
(iii) L ∈ (V 1 ∩ L )(A).
(iv) The syntactic homomorphism φL : A∗ → O (L) of the language L satisfies

the pseudoidentity x2 = x literally and O (L) is J -trivial.
(v) L ∈ V 1(A).

Proof. The conditions (i) and (ii) are equivalent by Proposition 2. The equiva-
lence of conditions (iii) and (iv) follows from the characterization of varieties V 1

and L . The equivalence of conditions (iii) and (v) is contained in Corollary 1.
The implication (i) =⇒ (iii) holds as V 1∩L is closed under boolean operations.
In the rest we show the implication (iii) =⇒ (i) which concludes the proof.

Let L ∈ (V 1 ∩ L )(A). Then L is a boolean combination of the languages of
the form A∗a1A

∗a2 . . . akA
∗, k ∈ N0, a1, . . . , ak ∈ A and moreover L is literally

idempotent, i.e. L = L is a finite union of the languages of the form

Lu1
∩ · · · ∩ Lun

∩ Lc
v1

∩ · · · ∩ Lc
vk
.

We will show that this language can be written as a boolean combination
of the languages of the form (L 1/2). In fact we will follow a decomposition of
a language from the class V 1 to a boolean combination. Because our literally
idempotent language is fully given by the words in normal form contained in it,
we will concentrate on such words.

Let K = Lu1
∩ · · ·∩Lun

∩Lc
v1
∩ · · ·∩Lc

vk
. We denote r the maximal length of

words in the set {u1, . . . , un, v1, . . . vk}. Now for any word w ∈ K in the normal
form, and of the length at least 2r, we consider two following lists of words in
the normal forms :

s1, . . . , sp are all words of the length 2r, in the normal form which are sub-
words of w.

t1, . . . , tq are all words of the length 2r in the normal form which are not
contained in w as subwords.
We consider the language

Nw = Ls1
∩ · · · ∩ Lsp

∩ Lc
t1 ∩ · · · ∩ Lc

tq
.

In this way we define finitely many languages (for all w’s we have only finitely
many s’s and t’s). By Proposition 2, all are boolean combinations of languages
of the form (L 1/2). For a word z ∈ K, in the normal form, and of the length
smaller than 2r we simply denote Mz = {z}. Note that Mz = a+

1 a
+

2 . . . a
+

l where
z = a1 . . . al and this language is of our form because Mz = a∗1 . . . a

∗
l ∩ Lz.

We will show that
K =

⋃

w

Nw ∪
⋃

z

Mz .

”⊆” : Let x ∈ K. Then w = −→x ∈ K. If w has the length smaller than 2r
then x ∈Mw. If w has the length at least 2r then x ∈ Nw.
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”⊇” : If x ∈ Mz then x ∼ z ∈ K and x ∈ K follows.
If x ∈ Nw then we have x ∈ Lsi

, and x ∈ Lc
tj

for all i’s and j’s . We want to

prove that −→x ∈ K, i.e. −→x ∈ Lui
and −→x 6∈ Lvj

.
If we take an arbitrary u ∈ {u1, . . . , un} then u is contained in w. Because w

is in the normal form and the length of u is ≤ r, we can find u as a subword of
the word s, which is a subword of w, it is a word in the normal form and it has
the length 2r. This means that u is a subword of some si which is a subword of
−→x . Hence −→x ∈ Lu

Now we take an arbitrary v ∈ {v1, . . . , vk} and assume for a moment that
−→x ∈ Lv. This means that −→x contains v as a subword. Again we can find a
subword s of the word −→x such that s is in the normal form, contains v as a
subword and it is of length 2r. Because −→x ∈ Nw we know that s ∈ {s1, . . . , sp}.
Hence v is a subword of s, which is a subword of w ∈ K. This implies that for
any word y such that −→y = w we have y ∈ Lv and consequently y ∈ K. This is
a contradiction with w ∈ K. ut

One can prove the following result in the similar way as Proposition 4.

Proposition 5. For a language L over A, the following are equivalent :
(i) L is a finite union of languages of the form (L 3/2).
(ii) L ∈ (V 3/2 ∩ L )(A).

(iii) L ∈ V 3/2(A).

Example 3. We can consider similar variety of all languages which are finite
unions of languages of the form (L E). It is clear that this class is a literal positive
variety contained in V 3/2. The inclusion is proper as we have an example of the

language a∗b+ = a∗bb∗ ∈ V 3/2 which can not be written in the previous way.

6 Literally Idempotent Languages over Two Letter

Alphabet

If we consider one letter alphabet {a}, then the literally idempotent languages
are exactly ∅, {ε}, a+, a∗.

It is well-known that for a regular languages L over the alphabet {a} the set
{ i | ai ∈ L } is semilinear (i.e. it is a finite union of linear sets). In other words,
the language L can be written in the form L = A ∪B · (ak)∗, where k ∈ N0 and
A and B are finite languages. Moreover, such expression of the language L can
be chosen in a canonical way. (All these observations can be easily established if
one can look at the minimal automaton of the language L.)

We indicate that the similar canonical form can be given in the case of the
literally idempotent languages over the two letter alphabet {a, b}.

Let L be an arbitral literally idempotent language over the alphabet {a, b}.
This language is uniquely determined by the words in normal forms, hence it is
natural to consider the sets:

aIa = { i ∈ N0 | (ab)ia ∈ L }, aIb = { i ∈ N0 | (ab)i ∈ L },
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bIa = { i ∈ N | (ba)i ∈ L }, bIb = { i ∈ N0 | (ba)ib ∈ L } .

If we look at the minimal automaton of the language L, which is literally idem-
potent, we see that any of the sets aIa, aIb, bIa and bIb is semilinear. This
observations lead to expression of the language L∩ a{a, b}∗a (and L∩ a{a, b}∗b,
L ∩ b{a, b}∗a, L ∩ b{a, b}∗b respectively) in the form A ∪ B((a+b+)k)∗, where
k ∈ N0 and A and B are finite languages over the alphabet {a, b}. Moreover such
expression of the language L∩ a{a, b}∗a can be chosen in a canonical way, if we
add assumptions that A, B are the smallest possible ones. Note that L∩a{a, b}∗a
is finite if and only if B is empty.

7 Linear Temporal Logic without next

In this section we introduce a connection between the Linear Temporal Logic
(LTL) and the concept of literal idempotency. The expressive power of certain
variants of the temporal logics were successfully characterized applying algebraic
methods, in particular the concept of the syntactic monoid, in [2], [3], and [11].
In the center of our interest is the expressive power of LTL formulas which do
not use the ”next” operator.

First, we recall basic definitions. A formula of linear temporal logic without
next operator (LTLWN) over a finite set A of letters is built from the elements of
the alphabet A and the logical constant T (true) using the boolean connectives
¬ and ∨ and the temporal logic operator U (until).

Let w ∈ A∗ be a word over A. The length of w is denoted by |w|. For any
1 ≤ i ≤ n = |w| we denote by w(i) the i-th letter of w and wi the suffix of w
starting at the i-th position, i.e. wi = w(i)w(i+ 1) . . . w(n).

The validity of the formula ϕ of LTLWN on w ∈ A∗ is defined as follows :
w |= T

w |= a ⇔ w(1) = a
w |= ¬ϕ ⇔ w 6|= ϕ
w |= ϕ1 ∨ ϕ2 ⇔ w |= ϕ1 ∨ w |= ϕ2

w |= ϕ1Uϕ2 ⇔ ∃i ∈ N : wi |= ϕ2 ∧ ∀1 ≤ j < i : wj |= ϕ1.
Every formula ϕ defines the language Lϕ = {w ∈ A∗ | w |= ϕ }.
It is well-known that language is definable by linear logic formula iff it is

star-free, i.e. it has aperiodic syntactic monoid.
The first easy observation, which is mentioned in different way in literature,

e.g. in [6], is the following statement.

Result 3 If a language L is definable by a formula of the Linear Temporal Logic
without next operator, i.e. L ∈ LTLWN , then it is literally idempotent.

The class of languages which are definable without until and next operators
is well-known. The interesting point of view is, that this class, denoted by U0,
forms a literal variety, which is characterized in the following lemma.

Lemma 5. Let L be a language. Then L ∈ U0 if and only if ϕL |=L xy = x.
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Proof. It is not hard to see that L ∈ U0 iff it is of the form BA∗, or BA∗ ∪ {ε},
where B ⊆ A. Indeed, For an non-empty subset B = {b1, . . . , bk} ⊆ A we have
the formula ϕB = b1 ∨ b2 ∨ · · · ∨ bk which defines the language BA∗, and also
the formula ϕ∅ = ¬T, which defines the language BA∗ for B = ∅. We can also
put ϕε = ¬ϕA, a formula getting the language {ε}.

Now if we take an arbitral language of the form BA∗, or BA∗ ∪ {ε} then the
syntactic monoid of L has (at most) three elements 1, b, c, with multiplication
given by rules bc = bb = b, cc = cb = c. The letters from B are mapped by
syntactic morphism to b and the letters from A \ B are mapped to c. (If B = ∅
or B = A then the syntactic monoid has at most two elements.) So, we see that
the identity is satisfied. Also the opposite implication is easy to get. ut

Note that in the previous lemma we can not exchange the literal validity
of the identity xy = x with the classical one, because in a classical sense the
identity has a consequence 1 ·y = 1. The reason is that the class U0 is not closed
under all homomorphic preimages, e.g. ϕ−1(ε) = B∗ for a morphism which maps
letters from a subset B ⊆ A to the empty word.

We add one more example of formulas of a special form which correspond to
certain literal variety of languages.

We say that the formula ϕ is easy if it is of the form

ψ = ϕB1
U(ϕB2

U(. . . (ϕBn
Uϕε)) . . . ).

The language is easy if it is definable by boolean combinations of easy formulas.

Lemma 6. Let L be a language over A. Then L is easy if and only if L ∈ V 1(A).

Proof. It is easy to see that an easy formula ψ = ϕB1
U(ϕB2

U(. . . (ϕBn
Uϕε)) . . . )

define the language B∗
1B

∗
2 . . . B

∗
n. Hence the statement follows from Proposi-

tion 4. ut

Recall, that the syntactic monoid of the language L = a∗b∗ is not idempo-
tent (as ab ∈ L and abab 6∈ L) but the syntactic morphism satisfies idempotency
literally. This could be a good motivation for a future work in the field of appli-
cations of literal idempotent varieties in LTL. The investigations of connections
of certain hierarchies of languages with LTL are in progress.
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