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Abstract. We consider Sturmian trees as a natural generalization of
Sturmian words. A Sturmian tree is a tree having n+1 distinct subtrees of
height n for each n. As for the case of words, Sturmian trees are irrational
trees of minimal complexity. We give various examples of Sturmian trees,
and we characterize one family of Sturmian trees by means of a structural
property of their automata.

1 Introduction

A Sturmian tree is a complete labeled binary tree having exactly n + 1 distinct
subtrees of height n for each n. Thus Sturmian trees are defined by extending
to trees one of the numerous equivalent definitions of Sturmian words. Sturmian
trees share the same property of minimal complexity than Sturmian words: in-
deed, if a tree has at most n distinct subtrees of height n for some n, then the
tree is rational, i.e. it has only finitely many distinct infinite subtrees.

This paper presents many examples and some results on Sturmian trees. The
simplest method to construct a Sturmian tree is to choose a Sturmian word and
to repeat it on all branches of the tree. We call this a uniform tree, see Figure 1.
However, many other categories of Sturmian trees exist.

Contrary to the case of Sturmian words, and similarly to the case of epis-
turmian words, there seems not to exist equivalent definitions for the family of
Sturmian words. This is due of course to the fact that, in our case, each node in
a tree has two children, and only one of them needs to be the root of a Sturmian
tree to make the whole tree Sturmian. Each tree labeled with two symbols can
be described by the set of words labeling paths from the root to nodes sharing
a distinguished symbol. The (infinite) minimal automaton of the language has
quite interesting properties when the tree is Sturmian. The most useful is that
the Moore equivalence algorithm produces just one additional equivalence class
at each step. We call these automata slow.

We have observed that two parameters make sense in studying Sturmian
words: the degree of a Sturmian tree is the number of disjoint infinite paths
composed of nodes which are all roots of Sturmian trees. The rank of a tree is
the number of distinct rational subtrees it contains. Both parameters may be
finite or infinite.
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Fig. 1. The top of a uniform tree for the word abaaba · · · . Node label a is represented
by •, and label b is represented by ◦. This tree will be seen to have infinite index and
rank 0.

The main result of this paper is that the class of Sturmian trees of degree one
and with finite rank can be described by infinite automata of a rather special
form. The automata are obtained by repeating infinitely many often a distin-
guished path in some finite slow automaton, and intertwining consecutive copies
of this path by letters taken from some Sturmian infinite word. Another property
is that a Sturmian tree with finite degree at least 2 always has infinite rank.

The class of Sturmian trees seems to be quite rich. We found several rather
different techniques to construct Sturmian trees. To the best of our knowledge,
there is only one paper on Sturmian trees prior to the present one, by Carpi, De
Luca and Varricchio [1].

2 Sturmian Trees

We are interested in complete labeled infinite binary trees, and we consider finite
trees insofar as they appear inside infinite trees.

In the sequel, D denotes the alphabet {0, 1}. A tree domain is a prefix-closed
subset P of D∗. Any element of a tree domain is called a node. Let A be an
alphabet. A tree over A is a map t from a tree domain P into A. The domain of
the tree t is denoted dom(t). For each node w of t, the letter t(w) is called the
label of the node w. A complete tree is a tree whose domain is D∗. The empty

tree is the tree whose domain is the empty set. A (finite or infinite) branch of a
tree t is a (finite or infinite) word x over D such that each prefix of x is a node
of t.

Example 1. (Dyck tree) Let A be the alphabet {a, b}. Let L be the set of Dyck
words over D = {0, 1}, that is the set of words generated by the context-free
grammar with productions S → 0S1S + ε. The Dyck tree is the complete tree
defined by

t(w) =

{

a if w ∈ L,

b otherwise.
(1)
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Fig. 2. The top of the Dyck tree of Example 1 and two of its factors, of height 3 and
2, respectively.

The top of this tree is depicted in Figure 2. The first four words ε, 01, 0101 and
0011 of L correspond to the four occurrences of the letter a as label on the top
of the tree.

More generally, the characteristic tree of any language L over D is defined to be
the tree t given by Equation (1). Conversely, for any tree t over some alphabet
A, and for any letter a in A, there is a language L = t−1(a) of words labeled
with the letter a. The language L = t−1(a) is called the a-language of t. In the
sequel, we usually deal with the two-letter alphabet A = {a, b}, and we fix the
letter a. We then say the language of t instead of the a-language.

We shall see that the a-languages of a tree t are regular if and only if the tree
t is rational. For any word w and any language L, the expression w−1L denotes
the set w−1L = {x | wx ∈ L}. Let t be a tree over A and w be a word over D. We
denote by t[w] the tree with domain w−1 dom(t) defined by t[w](u) = t(wu) for
each u in w−1 dom(t). The tree t[w] is sometimes written as w−1t, for instance
in [1]. If w is not a node of t, the tree t[w] is empty. A tree of the form t[w] is
the suffix of t rooted at w. Suffixes are also called quotients or subtrees in the
literature.

Let t be a tree over A and let w be a word over D. For a positive integer h,
we denote by D<h the set (ε + D)h−1 of words over D of length at most h − 1.
We set D<0 = ∅.

Let h be a nonnegative integer. The truncation of a tree t at height h is the
restriction of t to the domain D<h. Any tree obtained by truncation is called
a prefix of t. A factor of t is a prefix of a suffix of t. More precisely, for any
word w and any nonnegative integer h, we denote by t[w, h] the factor of height
h rooted at w, that is the tree of domain w−1 dom(t) ∩ D<h and defined by
t[w, h](u) = t(wu). A factor of height 0 is always the empty tree. A factor t[w, 1]
of height 1 can be identified with the letter t(w) of A that labels its root. A
prefix is a tree of the form t[ε, h].

Factors of height h are sometimes considered to have height h − 1 in the
literature (e.g. [1]). In this paper, the height of a finite tree is the number of
nodes along a maximal branch and not the number of steps in-between. Our
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convention will be justified by Proposition 1 which extends a similar result for
words in similar terms.

The following equation for any words w and w′ over D and any positive
integers h and h′ holds:

t[w, h][w′, h′] = t[ww′, min(h − |w′|, h′)] for |w′| ≤ h.

A tree is rational if it has finitely many distinct suffixes. Recall (see e.g. [2])
that a tree over an alphabet A is rational if and only if t−1(a) = {w ∈ D∗ |
t(w) = a} is a regular subset of D∗ for each letter a of A. For instance the Dyck
tree t of Example 1 is not rational since t−1(a) is the Dyck language which is
not regular [4]. The following proposition gives a characterization of complete
rational trees using factors. It extends to trees the characterization of ultimately
periodic words by mean of their subword complexity [3]. This statement appears
in [1].

Proposition 1. A complete tree t is rational if and only there is an integer h

such that t has at most h distinct factors of height h.

A complete tree is Sturmian if for any integer h, it has h + 1 factors of
height h. Since the factors of height 1 are the letters t(w) a Sturmian tree is
defined over a two letter alphabet. In what follows, we always assume that this
alphabet is {a, b}.

We will prove later that the Dyck tree given in Example 1 is indeed Sturmian.
We start with some simpler examples of Sturmian trees.

In the first of these examples, the same infinite word is repeated along each
branch of the tree.

Example 2. (Uniform trees) Let x = x0x1x2 . . . be an infinite word over an
alphabet A, where x0, x1, . . . , are letters. The uniform tree of x is the complete
tree t defined by t(w) = x|w|. This means of course that all nodes of the same
level n in the tree are labeled with the same symbol xn. If x is a Sturmian word,
then its uniform tree t is a Sturmian tree. Figure 1 shows the top of the uniform
tree of word x = abaabb · · · .

Example 3. (Left branch tree) Let x = x0x1x2 . . . be an infinite word over A,
where x0, . . . , are letters. We define a complete tree t by t(w) = x|w|0 . (Recall
that |w|d is the number of occurrences of d in w).

The label of each node w is the letter xn of x, where n is the number of
symbols 0 occurring on the path from the root to w. The label of the root node
is x0. If the label of w is xn, the labels of w0 and w1 are respectively xn+1

and xn.
In particular, the letters of the word x label the nodes of the left branch of

the tree, and all nodes on a right branch share the same label. Figure 3 shows
the top of the left branch tree of word x = abaabb · · · .

In the previous examples, two factors t[w, h] and t[w′, h] of height h are equal
if and only if x[|w|, h] = x[|w′|, h] in Example 2 (resp. if and only if x[|w|0, h] =
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Fig. 3. The top of a left branch tree for the word abaabb · · · .

x[|w′|0, h] in Example 3). (We write x[n, h] for the factor xnxn+1 · · ·xn+h−1 of
the word x.) It follows that in these examples, the tree t is Sturmian if and only
if the word x is Sturmian.

Example 4. (Indicator tree) Let x = x0x1x2 · · · be an infinite word over D. The
indicator tree of x is the complete tree t defined by

t(w) =

{

a if w is a prefix of x,

b otherwise.

In other terms, there is exactly one infinite path in t with all its nodes labeled
by the letter a. The letters of this path are the letters of the word x. Equiva-
lently, the indicator tree of the infinite word x is the characteristic tree of the
language composed of its (finite) prefixes. Figure 4 shows the indicator tree of
the Fibonacci word. It can be easily proved that x is a Sturmian word if and
only if its indicator tree t is a Sturmian tree.

An indicator tree has rank 1 and degree 1.

The following example is a variation on Example 4. For a finite word w and
an infinite word x, we denote by d(w, x) the integer |w| − |u| where u is the
longest common prefix of w and x.

Example 5. (Band indicator tree) Let x = x0x1x2 . . . be an infinite word over D

and let k be a non-negative integer. The band indicator tree of width k is the
complete tree t defined by

t(w) =

{

a if d(w, x) ≤ k,

b otherwise.

Again, x is a Sturmian word if and only if t is a Sturmian tree. A band indicator
tree has degree 1. The band indicator tree of width 0 is the indicator tree defined
in Example 4, since d(w, x) ≤ 0 if and only if w is a prefix of x.
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Fig. 4. The top of the indicator tree for the Fibonacci word 01001010 · · · . The only
nodes labeled a are on the Fibonacci path.
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Fig. 5. Automaton accepting the prefixes of 01001010 · · · . All states are final excepted
+∞.

3 Rank and degree

Recall that a branch of a tree is a (finite or infinite) word x over D such that
each prefix of x is a node of the tree.

A node w of a tree t is called rational if the suffix t[w] is a rational tree. The
rank of a tree t is the number of distinct rational suffixes of t. This number is
either a nonnegative integer or infinite.

If w is an irrational node, then its prefixes also are irrational. Furthermore,
at least one of the two words w0 and w1 also is irrational. The set of irrational
nodes of a tree is a tree domain in which any finite branch is the prefix of an
infinite branch.

The degree of a tree t is the number of infinite branches composed of irrational
nodes. This number is either a nonnegative integer or infinite.

As a first example, consider the Dyck tree defined in Example 1. It has rank 1
and has infinite degree. A node w of this tree is rational if it is not a prefix of
some Dyck word. The set of rational nodes is thus the set L1D∗ where L is
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the set of Dyck words. On the contrary, each branch in 00∗10ω only contains
irrational nodes. The degree of the Dyck tree is thus infinite.

Next, let t be the indicator tree of a Sturmian word x, as defined in Example 4.
A node w of t is irrational if and only if it is a prefix of x. Thus, the word x

itself is the only infinite branch composed of irrational nodes, and therefore the
degree of this tree is 1. All rational subtrees are the same, so this tree has rank 1.

These examples show that there are Sturmian trees of degree 1 or of infinite
degree. It turns out that there exist also Sturmian trees of finite degree greater
than 1. In the final section, we construct a Sturmian tree of degree 2 but this
construction is rather involved.

Here is a table containing the result of discussing the relation between degree
and rank. A tree with rank 0 always has infinite degree since there is no rational
node.

rank
degree finite infinite

1 characterized in Theorem 1 example 9 (appendix)
≥ 2, finite empty by Proposition 4 example 10 (appendix)
infinite example of Dyck tree example not given here

The main result of the paper is the characterization of Sturmian trees of
degree 1 and with finite rank by a structural property of the minimal automaton
of its language.

4 Automata

We recall elementary properties of automata, just observing that they hold also
when the set of states is infinite. We only use deterministic and complete au-
tomata. An automaton A over a finite alphabet D is composed of a state set Q,
a set F ⊆ Q of final states, and of a next-state function Q × D → Q that maps
(q, d) to a state denoted by q · d. Given a distinguished state i, a word w over D

is accepted by the automaton if the state i · w is final. When we emphasize the
existence of state i, we call it the initial state as usual.

An automaton B is a subautomaton of an automaton A if its set of states is
a subset of the set of states of A which is closed under the next-state function
of A.

Example 6. (Dyck automaton) The following automaton accepts the Dyck lan-
guage. The set of states is Q = N ∪ {∞}. The initial and unique final state is 0.
The next state function is given by n ·0 = n+1 for n ≥ 0, n ·1 = n−1 for n ≥ 1,
0 ·1 = ∞ and ∞·0 = ∞·1 = ∞. This automaton is depicted in Figure 6. We call
it the Dyck automaton. The singleton {∞} is the unique proper subautomaton
of the Dyck automaton.



64 Jean Berstel, Luc Boasson, Olivier Carton and Isabelle Fagnot

∞ 0 1 2 3 . . .0, 1
1

0

1

0

1

0

1

0

1

Fig. 6. Automaton of the Dyck language. State 0 is both the initial and the unique
terminal state.

Given an arbitrary automaton A, we define inductively a sequence (∼n)n≥1

of equivalence relations on Q as follows.

q ∼1 q′ ⇐⇒ (q ∈ F ⇐⇒ q′ ∈ F )

q ∼n+1 q′ ⇐⇒ (q ∼n q′ and ∀d ∈ D q · d ∼n q′ · d)

These are well-known in the case of finite automata, and many properties extend
to general automata. We call ∼n the Moore equivalence of order n. The index

of ∼n is the number of equivalence classes of ∼n.
The equivalence ∼h+1 is a refinement of the equivalence ∼h. Thus the index

of ∼h+1 is at least the index of ∼h. An automaton is called slow if it is minimal
and if the index of ∼h is at most h+1 for all h ≥ 1. If ∼h and ∼h+1 are different,
that there is one class c of ∼h which gives raise to two classes in ∼h+1. We say
that ∼h+1 splits class c, or that class c is split by ∼h+1.

It is sometimes useful to distinguish, in a minimal automaton, two kinds of
states. A state p is rational if it has finitely many descendants in the automaton,
viewed as a graph or, equivalently, if it generates a finite subautomaton. States
which are not rational are called irrational. In the minimal automaton associated
to the language of a tree, a state is rational if and only if it corresponds to the
root of a rational tree.

Let t be a complete tree over {a, b}. The language of t is the set t−1(a). Let
A be an automaton accepting t−1(a). The following proposition shows that the
classes of ∼h are in a one to one correspondence with the factors of t of height h.

Proposition 2. Let t be a complete tree over {a, b} and let A be an automaton

over D accepting the language of t, with initial state i. For any words w, w′ ∈ D∗

and any positive integer h, one has

i · w ∼h i · w′ ⇐⇒ t[w, h] = t[w′, h] .

Corollary 1. Let t be a complete tree over {a, b} and let A be an automaton

over D accepting the language of t. The tree t is Sturmian iff each equivalence

relation ∼h has h + 1 classes.

5 Trees with finite rank

5.1 A tree of degree one

In this section, we give an example of a family of Sturmian trees with finite
rank and of degree 1 by describing the family of automata accepting their lan-
guages. These (infinite) automata are based on a finite slow automaton. In this
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automaton, a path is distinguished (called a lazy path). The infinite automaton
is obtained by repeating the lazy path and intertwining the copies with symbols
taken from an infinite Sturmian word.

In the next section, we show that any Sturmian tree of degree 1 and with
finite rank can be obtained in this way.

0 1 2 3 4 5 6 7 8 · · ·

p

r

s
0 0 0 x0 0 0 0 x1 0

1 1 1 1 1 1 1

x̄0 x̄1

0 1

0

1

0, 1

Fig. 7. A slow automaton Â for the Fibonacci word x0x1 · · · = 01001010 · · · . The final
states are p, r, 0, 2, 4, · · · .

Let A = (Q, {i}, F ) be a finite deterministic automaton over the alphabet D

with N states. We assume that A has the two following properties. First, A is
slow. Recall that by definition, this means that the automaton is minimal and
that Moore’s minimization algorithm splits just one equivalence class into two
new classes at each step.

Next, we suppose that there is a lazy path in A. This is a path

π : q0

a0−→ q1

a1−→ q1 · · · qh−1

ah−1

−−−→ qh

of length h, where q0 and qh are the two states which are separated in the last
step in Moore’s algorithm together with the condition that

qh−1 · āh−1 = q0 or qh .

The first of these conditions means that q0 ∼N−2 qh and q0 6∼N−1 qh. As a
consequence, the second property means that qh−1 · āh−1 cannot be separated
from qh−1 · ah−1 before the very last step of the Moore algorithm.

Example 7. The automaton Â given in Figure 7 has a subautomaton A com-
posed of the states {p, s, r}. This subautomaton is slow: the first partition is into
{p, r} and {s}, and the second partition is equality. The finite subautomaton A
in Figure 7 admits for example the lazy path π : p

0−→ s
0−→ p

0−→ s
1−→ r, and

indeed s
0−→ p. Here h = 4.

Given the finite slow automaton A, the lazy path π and an infinite word
x = x0x1x2 · · · over D, we now define an infinite minimal automaton Â which
accepts the set of nodes labeled a of a tree t. We will show that if x is a Sturmian
word, then t is a Sturmian tree of degree 1. This automaton is the extension of
A by π and x, and is denoted by Â = A(π, x).
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The set of states of Â is Q∪N. For convenience, we use a mapping q : N → Q

defined by q(n) = qn mod h for any n ∈ N. Here q0, . . . qh are the states of the
lazy path of A. The initial state of Â is 0 and its set of final states is F ∪q−1(F ).
The next-state function of A is extended to Â by setting, for n ∈ N,

(α) if n 6≡ h − 1 mod h, then

n · an mod h = n + 1, n · ān mod h = q(n) · ān mod h

(β) if n = ih + h − 1 for some i ≥ 0, then

n · xi = n + 1, n · x̄i = q0

The infinite path through the integer states of the automaton Â is composed
of an infinite sequence of copies of the lazy path of A. For each state q(n) inside
each of the copies of the lazy path, the next-state for the “other” letter, that is
the letter ān mod h, maps q(n) back into A. Two consecutive copies of the lazy
path, say the ith and i + 1th, are linked together by the letter xi of the infinite
word x driving the automaton.

Proposition 3. Let Â = A(π, x) be the extension of the finite slow automaton

A by a lazy path π and an infinite word x. If the word x is Sturmian, then Â
defines a tree t which is Sturmian, of degree 1, and having finite rank.

The tree defined by this automaton has degree 1 since the only irrational
states are the integer states n and they all lie on a single branch. We claim that
this tree is also Sturmian. The proof is through three lemmas.

We denote by ∼k the Moore equivalence on the states. The next three lemmas
just prove that the automaton has the required properties. We fix the automaton
A, set N to the number of its states, and we fix the lazy path π : q0

a0−→ q1
a1−→

· · · ah−1−−−→ qh. We also use the notation q(n) = qn mod h. However, x is not required
to be Sturmian in the three following lemmas.

5.2 Characterization

In this section, we give a characterization of Sturmian trees of degree 1 which
have finite rank by describing the family of automata accepting their languages.
These (infinite) automata are extensions of a finite automaton by a lazy path
and a Sturmian word.

Theorem 1. Let t be a Sturmian tree of degree one having finite rank, and let Â
be the minimal automaton of the language of t. Then Â is the extension of a slow

finite automaton A by a lazy path π and a Sturmian word x, i.e. Â = A(π, x).

Given a tree t and some Moore equivalence ∼h on its minimal automaton,
it is convenient to call an quivalence class of ∼h an irrational class if it is
entirely composed of irrational states. It is a rational class otherwise. A rational
class contains at least one rational state, and may contain even infinitely may
irrational states.
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Q ∪ N
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3, 7, 11

3, 7, 11

3, 7, 11

3, 7, 11

Fig. 8. The tree showing the evolution of the Moore equivalence relations on the au-
tomaton given in the previous picture. Each level describes a partition. Each level has
one class splitting into two classes at the next level.

Lemma 1. Let t be a Sturmian tree with finite rank. Either there is an integer

n such that all rational classes of ∼n are singletons, or there is an integer n such

that all irrational obtained by splitting a class of ∼′
n for n′ ≥ n are singleton

classes.

We will see later examples of Sturmian trees of degree greater than one. In
these examples, the trees have finite rank. This is due to the following properties
of Sturmian trees.

Proposition 4. The degree of a Sturmian tree with finite rank is either one or

infinite.

Proof. Let t be a Sturmian tree with finite rank, and assume it has finite de-
gree d > 1. A node w of t is a fork if both w0 and w1 are irrational nodes. Since
t has degree d, it has exactly d − 1 fork nodes.

A state of the minimal automaton of t is a fork state if it is the state of a fork
node. The automaton has at most d − 1 fork states. We want to show that for
large enough n, an equivalence class of ∼n containing a fork state is a singleton.

In view of Lemma 1, there are two cases. Either there is an integer n such
that all rational states are singletons for ∼n. Then a class of ∼n containing a
fork state contains only fork states since indeed a state that is not a fork state
maps to a rational state by at least one letter, whereas a fork state does not. So
any class containing a fork state is finite, and therefore will be split eventually
into singleton classes.

In the other case described by Lemma 1, irrational states will be in singleton
classes for large enough n. Again, since there are only finitely many fork states,
each of these will be constructed at some step in the Moore algorithm.

Consider now an integer H such that each fork state is a singleton class of
∼H . This means that the Nerode equivalence and the equivalence ∼H coincide
for these states, and consequently two fork nodes in the tree define the same
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state in the automaton if and only if they are the roots of the same subtree of
height H . Since there are infinitely many occurrences of any subtree of height H

in Sturmian tree, there are infinitely many nodes that correspond to the same
fork state, so there are infinitely many fork nodes. This yields the desired con-
tradiction.

5.3 Another example

Example 8. Let x and x′ be two Sturmian words over D that have exactly the
same factors but share no common suffix: for each factorization x = uy, x′ = u′y′,
one has y 6= y′. Such words do exist and can even be constructed explicitly. We
define a tree tx,x′ by giving a (minimal) automaton accepting t−1

x,x′(a). Let Q be
the set N ∪ {n′ | n ∈ N} ∪ {∞}. The only final state is ∞.

∞

0 1 2 3 4 5 6 · · ·

0’ 1’ 2’ 3’ 4’ 5’ 6’ · · ·

0

1

0

1 0

1 0

1

0

1 0

1 0

1 0

1

1

0 1

0 1

0

0

1 1

0 1

0 1

0

Fig. 9. Automaton of tx,x′ for x = 01001010 . . . and x′ = 10100100 . . .

To prove that tx,x′ is Sturmian, one shows that the automaton is slow and
minimal. The automaton is indeed minimal because the two words share no
common suffix, and it is slow because the two words are Sturmian and have the
same set of factors. This tree has rank 0 and infinite degree.

6 Trees with infinite rank

There exist Sturmian trees with infinite rank given in the Appendix.
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Appendix

There exist Sturmian trees with infinite rank. The following example gives a
Sturmian tree with infinite rank and of degree 1.

Example 9. We define a tree by giving a (minimal) automaton accepting its
language. The set of states of the automaton is Q = {n ∈ N | n ≥ 3} × {0, 1}.
The set of final states is the set {(n, b) ∈ Q | n ≡ 0 mod 2}. The set E of
transitions is defined as follows. Let n = 2km where m ≥ 1 and m 6≡ 0 mod 2.
The integer 2k is then the greatest power of 2 which divides n.

(n, b) · 0 =

{

(2k−1 + 1, 0) if m = 1 and b = 0

(n + 1, b) otherwise

(n, b) · 1 =































(3, 0) if k = 0

(4, 0) if k = 1

(4, 0) if k = 2, m = 1 and b = 0

(2k−2 + 1, 0) if k > 2, m = 1 and b = 0

(2k−1 + 1, 0) otherwise

In Figure 10 we give a picture of this automaton; states of the form (n, 0)
are drawn as circles n and states of the form (n, 1) as squares n .

The previous example of a Sturmian tree of degree one having infinite rank
can be extended to an example of a Sturmian tree of degree two which must
have infinite rank in view of Proposition 4.

Example 10. We define a tree by giving a (minimal) automaton accepting its
language. The set of states of the automaton is the following set Q

Q = {(n, 0) | n ≥ 2}

∪ {(n, 1) | n = 3 or 3k+2 − 4 · 3k + 1 ≤ n ≤ 3k+2 with k ≥ 0}

∪ {(n, 2) | n ∈ {2, 3} or 3k+2 − 3k + 1 ≤ n ≤ 3k+2 with k ≥ 0}.

The set of final states is the set {(n, b) ∈ Q | n ≡ 0 mod 2}. The set E of
transitions is defined as follows. Let n = 2k3lm where m 6≡ 0 mod 2 and m 6≡ 0
mod 3. The integers 2k and 3l are the greatest powers of 2 and 3 which divide n.

(n, b) · 0 =



















(3l−1 + 1, 0) if k = 0, m = 1 and b = 0

(3l+1 − 4 · 3l−1 + 1, 1) if k = 0, m = 1 and b = 1

(3l−1 − 2 · 3l−1 + 1, 2) if k = 0, m = 1 and b = 2

(n + 1, b) otherwise

(n, b) · 1 =































(3, 1) if n = 2 and b = 2

(3, 0) if n = 3 or l = 0

(3l−2 + 1, 0) if k = 0, l ≥ 2 and m = 1

(3l−1 + 1, 0) if k = 0, l ≥ 1 and m ≥ 2

(3l + 2, 0) otherwise
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In Figure 11 we give a picture of this automaton; states of the form (n, 0) are
drawn as circles n and states of the form (n, 1) as squares n and states of
the form (n, 2) as lozenges n .
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Fig. 10. Final states are dark. Observe the fractal-like structure, with a doubling of
the size of each block.
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Fig. 11. Sturmian Tree of degree 2


