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Abstract

The necessary and sufficient conditions are extracted for periodicity of bi-ideals. By the way two
proper subclasses of uniformly recurrent words are introduced.

1 Introduction

The periodicities are fundamental objects, due to their primary importance in word combinatorics [8, 9] as
well as in various applications. The study of periodicities is motivated by the needs of molecular biology [6]
and computer science. Particularly, we mention here such fields as string matching algorithms [4], text
compression [14] and cryptography [12].

In different areas of mathematics, people consider a lot of hierarchies which are typically used to classify
some objects according to their complexity. Here we deal with hierarchy

B ⊃ Ru ⊃ P , where

B — the class of bi-ideals,
Ru — the class of uniformly recurrent words,
P — the class of periodic words.
This hierarchy comes from combinatorics on words, where these classes are being investigated intensively
(cf. [2, 8, 9, 10]). Bi-ideal sequences have been considered, with different names, by several authors in
algebra and combinatorics [1, 3, 7, 13, 17].

We refine the hierarchy B ⊃ Ru ⊃ P to the chain

B ⊃ Ru ⊃ Bb ⊃ Bf ⊃ P , where

Bb — the class of bounded bi-ideals,
Bf — the class of finitely generated bi-ideals. So we localize the class of uniformly recurrent words by
means of bi-ideals. Corollary 7 gives one method how the words of Bf can be generated.

At first we characterize periodic finitely generated bi-ideals: we give one necessary condition [Corollary 8]
in prefix–suffix terms and demonstrate this is not sufficient [Example 12]. Then we turn our attention to
factors and prove sufficient and necessary condition [Theorem 21], and demonstrate this is not necessary
for bounded bi-ideals [Example 34]. Lastly we extract exhaustive description [Theorem 37] of periodicity
for all class of bi-ideals (more complicated of course).
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2 Preliminaries

In this section we present most of the notations and terminology used in this paper. Our terminology is
more or less standard (cf. [10]) so that a specialist reader may wish to consult this section only if need
arise.
Let A be a finite non-empty set and A∗ the free monoid generated by A. The set A is also called an
alphabet, its elements letters and those of A∗ finite words. The role of identity element is performed by
empty word and denoted by λ. We set A+ = A∗\{λ}.
A word w ∈ A+ can be written uniquely as a sequence of letters as w = w1w2 . . . wl, with wi ∈ A,
1 ≤ i ≤ l, l > 0. The integer l is called the length of w and denoted |w|. The length of λ is 0. We set
w0 = λ ∧ ∀i wi+1 = wiw ;

w+ =
∞⋃

i=1

{wi}, w∗ = w+ ∪ {λ} .

A positive integer p is called a period of w = w1w2 . . . wl if the following condition is satisfied:

1 ≤ i ≤ l − p ⇒ wi = wi+p .

We recall the important periodicity theorem due to Fine and Wilf [5]:

Theorem 1. Let w be a word having periods p and q and denote by gcd(p, q) the greatest common divisor

of p and q. If |w| ≥ p + q − gcd(p, q), then w has also the period gcd(p, q).

The word w′ ∈ A∗ is called a factor (or subword) of w ∈ A∗ if there exist u, v ∈ A∗ such that w = uw′v.
The word u (respectively v) is called a prefix (respectively a suffix) of w. The ordered triple (u, w′, v) is
called an occurrence of w′ in w. The factor w′ is called proper factor if w 6= w′. We denote respectively
by F(w), Pref(w) and Suff(w) the sets of w factors, prefixes and suffixes.
An (indexed) infinite word x on the alphabet A is any total map x : N → A. We set for any i ≥ 0,
xi = x(i) and write

x = (xi) = x0x1 . . . xn . . .

The set of all the infinite words over A is denoted by Aω.
The word w′ ∈ A∗ is a factor of x ∈ Aω if there exist u ∈ A∗, y ∈ Aω such that x = uw′y. The word u
(respectively y) is called a prefix (respectively a suffix) of x. We denote respectively by F(x), Pref(x) and
Suff(x) the sets of x factors, prefixes and suffixes. For any 0 ≤ m ≤ n, both x[m, n] and x[m, n+1) denote
a factor xmxm+1 . . . xn. The indexed word x[m, n] is called an occurrence of w′ in x if w′ = x[m, n]. The
suffix xnxn+1 . . . xn+i . . . is denoted by x[n,∞).
If v ∈ A+ we denote by vω the infinite word vω = vv . . . v . . . This word vω is called a periodic word. The
concatenation of u = u1u2 . . . uk ∈ A∗ and x ∈ Aω is the infinite word

ux = u1u2 . . . ukx0x1 . . . xn . . .

A word x is called ultimately periodic if there exist words u ∈ A∗, v ∈ A+ such that x = uvω. In this
case, |u| and |v| are called, respectively, an anti-period and a period.
A sequence of words of A∗

v0, v1, . . . , vn, . . .

is called a bi-ideal sequence if ∀i ≥ 0 (vi+1 ∈ viA
∗vi). The term ”bi-ideal sequence” is due to the fact

that ∀i ≥ 0 (viA
∗vi) is a bi-ideal of A∗.

Corollary 2. Let (vn) be a bi-ideal sequence. Then

vm ∈ Pref(vn) ∩ Suff(vn)

for all m ≤ n.
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A bi-ideal sequence v0, v1, . . . , vn, . . . is called proper if v0 6= λ. In the following the term bi-ideal sequence
will be referred only to proper bi-ideal sequences.
If v0, v1, . . . , vn, . . . is a bi-ideal sequence, then there exists a unique sequence of words

u0, u1, . . . , un, . . .

such that

v0 = u0, ∀i ≥ 0 (vi+1 = viui+1vi) .

3 The Class of Finitely Generated Bi-ideals

Let us consider the set A∞ = A∗ ∪ Aω and u, v ∈ A∞. Then d(u, v) = 0 if u = v, otherwise

d(u, v) = 2−n,

where n is the length of the maximal common prefix of u and v. It is called a prefix metric.
Let v0, v1, . . . , vn . . . be an infinite bi-ideal sequence, where v0 = u0 and ∀i ≥ 0 (vi+1 = viui+1vi) . Since
for all i ≥ 0 the word vi is a prefix of the next word vi+1 the sequence (vi) converges, with respect to the
prefix metric, to the infinite word x ∈ Aω

x = v0(u1v0)(u2v1) . . . (unvn−1) . . .

This word x is called a bi-ideal. We say the sequence (ui) generates the bi-ideal x.
Let x be an infinite word. A factor u of x is called recurrent if it occurs infinitely often in x. The word
x is called recurrent when any of its factors is recurrent.

Proposition 3. (see, e.g., [10]) A word x is recurrent if and only if it is a bi-ideal.

Lemma 4. (see, e.g., [10]) Let x ∈ Aω be an ultimately periodic word. If x is recurrent, then x is periodic.

Due to this lemma we can restrict ourselves. Therefore we investigate only the periodicity of bi-ideals
and say nothing about ultimately periodicity.

Definition 5. Let (ui) generates a bi-ideal x. The bi-ideal x is called finitely generated if ∃m ∀i ∀j (i ≡
j (mod m) ⇒ ui = uj). We say in this situation m–tuple (u0, u1, . . . , um−1) generates the bi-ideal x.

Theorem 6. If
⋃m−1

i=0
Pref(ui) or

⋃m−1

i=0
Suff(ui) has at least two words with the same length then a

bi-ideal generated by (u0, u1, . . . , um−1) is not periodic.

Proof. Let x ∈ Aω be a bi-ideal generated by (u0, u1, . . . , um−1).

(i) Let
⋃m−1

i=0
Pref(ui) has at least two words with one and the same length. Then there exist ui, uj such

that ua ∈ Pref(ui), ub ∈ Pref(uj), where u ∈ A∗, a, b ∈ A and a 6= b.
Let T0 = |ua| and t > T0. Then we can choose n so great that |vn| ≥ t, where vn+1 = vnuivn. Hence
vnua ∈ Pref(vn+1). Therefore a = xs, where s = |vnu|.
Since the tuple (u0, u1, . . . , um−1) generates the bi-ideal x then ∃k > n vk+1 = vkujvk. Hence vkub ∈
Pref(vk+1). Therefore b = xσ , where σ = |vku|. Since k > n then vn ∈ Suff(vk). Thus xs−t = xσ−t but
xs = a 6= b = xσ . That means that t is not a period of x.
(ii) Let

⋃m−1

i=0
Suff(ui) has at least two words with one and the same length. Then there exist ui, uj such

that au ∈ Suff(ui), bu ∈ Suff(ui), where u ∈ A∗, a, b ∈ A and a 6= b.
Let T0 = |au| and t > T0. Then we can choose n so great that |vn| ≥ t, where vn+1 = vnuivn. Hence
there exists v′ such that vnui = v′au. Therefore a = xs, where s = |v′|.
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Since the tuple (u0, u1, . . . , um−1) generates the bi-ideal x then ∃k > n vk+1 = vkujvk. Hence there exists
v′′ such that vkuj = v′′bu. Therefore b = xσ , where σ = |v′′|. Since k > n then vn ∈ Pref(vk). Thus
xs+t = xσ+t but xs = a 6= b = xσ . That means that t is not a period of x.
(iii) Let us suppose that T is a period of x. Then ∀n ∈ Z+ nT is a period too. This denies (i) and (ii) as
well.

Corollary 7. Let A be an alphabet and every letter a ∈ A is chosen with one and the same probability

p(a) = 1

|A| . Let p be a probability that a bi-ideal generated by (u0, u1, . . . , um) is ultimately periodic. If

∀i |ui| ≥ n then p ≤ 1

|A|mn .

Remarks. (i) Let A = {0, 1} and m = n = 10 then probability p ≤ 1

2100 . This is practically negligible
value.
(ii) Let a tuple (u0, u1, . . . , um) has been generated. Let u be the longest word of this tuple. There is only
one dubious situation by Theorem 6 if we like a bi-ideal that is not periodic. This happens if all words
of the tuple (u0, u1, . . . , um) are prefixes and suffixes of u. This can be easy verified by deterministic
algorithm. Thus we have indeed practical method how to generate a bi-ideal that is not periodic.

Corollary 8. If a bi-ideal generated by (u0, u1, . . . , um−1) is periodic then

∀i ∀j (ui ∈ Pref(uj) ∩ Suff(uj) ∨ uj ∈ Pref(ui) ∩ Suff(ui)) .

Corollary 9. The class of periodic words P is the proper subclass of the class of finitely generated

bi-ideals Bf.

The following two lemmata are very easy, but those turn out to be extremely useful:

Lemma 10. If x = wω and T is the minimal period of the word x, then T\|w|, i.e. T divides |w|.

Proof. Let n = T |w|, then both T and |w| are periods of the word x[0, n). Hence [Theorem 1] t =
gcd(T, |w|) is a period of x[0, n). Now we have

∀i x[0, n) = x[ni, (n + 1)i).

Therefore t is a period of x. Since T is the minimal period of the word x, then t ≥ T ≥ gcd(T, |w|) = t.
Hence T = gcd(T, |w|), thereby T\|w|.

Lemma 11. If x = wω = uvy and |w| = |v|, then vy = y = vω.

Proof. Let |w| = t and |u| = k + 1, then v = xk+1xk+2 . . . xk+t, since |v| = |w|. We have ∀i xi+t = xi,
therefore

∀j ∈ 1, t ∀s xk+j = xk+j+st .

Example 12. The bi-ideal generated by (0, 010) is not periodic.

Proof. (i) Let x be the bi-ideal generated by (0, 010), and

w0 = 0,

w1 = 0 010 0,

w2 = 00100 0 00100,

. . .

w2n = w2n−10w2n−1,

w2n+1 = w2n010w2n,

. . .
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in other words x = lim
k→∞

wk .

Let t be a period of x. Then t > 3, otherwise the period of w2 must be less than or equal to 3.
Contradiction. So we have a word w such that |w| = t > 3 and x = wω.
(ii) Now choose n so large odd number that t < |wn|. Then

x = wn0wn . . .

and

wn = (uv)su,

where s ≥ 1, uv = w and u 6= λ. (If u = λ or v = λ, then t divides |wn|. We shall analyse this situation
later.) From Lemma 11 we conclude that

x = wn0wω = wn0(uv)ω = wn0x .

Thus

(uv)suvuvu . . . = (uv)su0uvuv . . .

Hence

vuvu . . . = 0uvuv . . .

Since u 6= λ and u ∈ Pref(x), then u = 0u′. Hence

vu . . . = 00u′v . . .

Thus, if |v| ≥ 2, then v = 00v′.
(iii) Note that

wn0x = x = wn0wn010wn . . .

Therefore x = wn010wn . . . and
(uv)ω = x = (uv)su010 . . .

Hence v = 01v′′ but v = 00v′. Contradiction.
(iv) It remains to check that |v| ≤ 1. Note

u010 . . . = uvu . . .

Hence, if |v| = 1, we can conclude that the first letter of u is 1. Contradiction! Otherwise v = λ, then
u = 01u′′. Again contradiction, since w1 = 00100, therefore the first two letters of u must be 00. Finally,
if u = λ, then it remains to interchange u with v in the last two sentences of the proof.
Now turn our attention to Corollary 8. We have proved that condition

∀i ∀j (ui ∈ Pref(uj) ∩ Suff(uj) ∨ uj ∈ Pref(ui) ∩ Suff(ui))

is necessary for periodicity of finitely generated bi-ideals. Nevertheless Example 12 demonstrates that
this condition is not sufficient.
The following lemma is crucial:

Lemma 13. If a bi-ideal x generated by (u0, u1, . . . , um−1) is periodic, then

∀i ∀j uix = ujx .
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Proof. (i) Since x is a bi-ideal generated by (u0, u1, . . . , um−1), then

x = lim
k→∞

vk ;

where v0 = u0, vk+1 = vkuk+1vk,

and uk+1 = ui, if k + 1 ≡ i(mod m) .

Let t be a period of x and choose n so large that t < |vn|. For every i ∈ 0, m− 1 we can find si > n such
that

vsi+1 = vsi
uivsi

.

Hence, by Corollary 2,
∀i ∃v′i vsi

= vnv′ivn .

Therefore
x = vsi

uivsi
. . . = vnv′ivnuivn . . .

(ii) We suppose that x is periodic, thereby

x = vω, where v = x[0, t) .

Note v ∈ Pref(vn), therefore [Lemma 11]

x = vnv′ix = vnv′ivnuix .

Hence, ∀i x = vnuix, thereby ∀i ∀j uix = ujx .

Examples 14.

(i) First, we reexamine Example 12 in light of the above lemma. Let us suppose that a bi-ideal x generated
by (0, 010) is periodic then 0x = 010x. This contradicts the fact that the first letter of x is not 1 but 0.
The same arguments show that a bi-ideal generated by (010, 0) is not periodic too.
(ii) Both bi-ideals generated by ((01)n−10, (01)n0) and ((01)n0, (01)n−10)are not periodic. Indeed, if we
suppose that a bi-ideal x generated by ((01)n−10, (01)n0) is periodic then by Lemma 13

(01)n−10x = (01)n0x = (01)n−1010x .

Hence x = 10x. This contradicts the fact that the first letter of x is not 1 but 0.
The same arguments show that a bi-ideal generated by ((01)n0, (01)n−10)is not periodic too.
We now present some useful observations concerning the periodicity. We start with the following lemma.

Lemma 15. If ∃u ∈ A+ ux = x ∈ Aω, then a word x is periodic with the minimal period T\|u|.

Proof. Let u = a1a2 . . . at−1, where ∀j aj ∈ A, and y = ux, then
∀i xi = yi+t. Let

y = ux = x .

Hence
∀i yi = xi = yi+t .

This means that y is periodic with a period t. Since y = x, then x is periodic with a period t too. Let T
is the minimal period of x, then by Lemma 10 T\t, i.e. T\|u|.

Proposition 16. A word x ∈ Aω is periodic if and only if

∃u ∈ A+ ux = x ∈ Aω.
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Proof. ⇒ If x is periodic then ∃u ∈ A+ x = uω. Hence x = uuω = ux.
⇐ Lemma 15.

Corollary 17. Let u ∈ {u0, u1, . . . , um−1} and

|u| = max{|u0|, |u1|, . . . , |um−1|}. If T is the minimal period of a periodic bi-ideal x generated by

(u0, u1, . . . , um−1) then T < |u|.

Proof. If only u 6= λ then u = u0 and x = uω. Hence the minimal period T < |u|.
Otherwise, there exists v ∈ {u0, u1, . . . , um−1} such that u 6= v 6= λ. Now by Lemma 13 ux = vx.
Hence

∃v′ 6= u u = vv′ .

Thus vv′x = vx, therefore v′x = x. Since 0 < |v′| then T\|v′|. This follows immediately from Lemma 15.
Thereby T < |v′| < |u|.

Proposition 18. (see, e.g., [10]) Let u, v ∈ A+ be such that uv = vu. Then there exists w ∈ A+ such

that u, v ∈ w+.

Lemma 19. Let u, v ∈ A+ be such that ukv = vuk for any positive integer k. Then there exists w ∈ A+

such that u, v ∈ w+.

Proof. If k = 1 then it is Proposition 18. Now we assume that k > 1; by Proposition 18

∃x ∈ A+ (uk, v ∈ x+).

(i) If |x| > |uk−1|, then x = uk, because |x2| > |uk| and uk ∈ x+. Hence x ∈ u+, therefore v ∈ u+. Thus
∃w ∈ A+ (u, v ∈ w+); here w = u.
(ii) If |x| ≤ |uk−1|, then l = gcd(|x|, |u|) is period of uk by Theorem 1. Let

w ∈ Pref(u) ∧ |w| = l

then u ∈ w+. Since uk ∈ x+ then uk = xm for any m. Hence xm ∈ w+. Since |w|\|x| then x ∈ w+.
Therefore v ∈ w+.

Theorem 20. If x is a periodic bi-ideal generated by (u0, u1) then

∃w u0, u1 ∈ w∗.

Proof. Obviously, if u0 = u1 then a bi-ideal generated by (u0, u1) is periodic. Now suppose that u0 6= u1.
Then by Lemma 13 u0x = u1x.
(i) Let u0 ∈ Pref(u1), then u1 = u0u, where u 6= λ, and u0x = u1x = u0ux, therefore x = ux. Thus

x = u0u1 . . . = u0u0u . . .

x = ux = uu0u0 . . .

Hence u2
0u = uu2

0, and by Lemma 19 ∃w u0, u1 ∈ w∗.
(ii) Let u1 ∈ Pref(u0), then u0 = u1u, where u 6= λ, and u0x = u1ux. Since u0x = u1x then u1ux = u1x,
therefore x = ux. Thus

x = u0 . . . = u1u . . .

x = ux = uu0 . . . = uu1u . . .

Hence u1u = uu1, and by Proposition 18 ∃w u, u1 ∈ w∗. Since u0 = u1u then u0 ∈ w∗.

Theorem 21. A bi-ideal x generated by (u0, u1, . . . , um−1) is periodic if and only if

∃w∀i ∈ 0, m − 1 ui ∈ w∗ .
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Proof. Since x is a bi-ideal generated by (u0, u1, . . . , um−1), then

x = lim
k→∞

vk ;

where v0 = u0, vk+1 = vkuk+1vk,

and uk+1 = ui, if k + 1 ≡ i(mod m) .

⇒ We have u0x = u1x = . . . = um−1x by Lemma 13.

(i) First, we shall prove that ∃w u0, u1 ∈ w∗.
a) If u1 = λ or u1 = u0, then w = u0.

Now we shall consider the situation λ 6= u1 6= u0.
b) Let u0 ∈ Pref(u1) then

u1 = u0u, where u 6= λ, and

u0x = u1x = u0ux, therefore x = ux .

x = u0u1 . . . = u0u0u . . .

x = ux = uu0u0 . . .

Hence u2
0u = uu2

0, and by Lemma 19 ∃w u0, u ∈ w∗. Since u1 = u0u then u1 ∈ w∗.
c) Let u1 ∈ Pref(u0) then

u0 = u1u, where u 6= λ, and

u1x = u0x = u1ux, therefore x = ux .

x = u0 . . . = u1u . . .

x = ux = uu0 . . . = uu1 . . .

Hence u1u = uu1, thereby [Proposition 18] ∃w u, u1 ∈ w∗. Since u0 = u1u, then u0 ∈ w∗.
(ii) Further, we shall prove the theorem by induction on n, i.e., suppose that ∃v∀i ∈ 0, n ui ∈ v∗. Let
un 6= un+1 6= λ, otherwise un+1 ∈ v∗.

a) Let un ∈ Pref(un+1) then

un+1 = unu, where u 6= λ, and

unx = un+1x = unux, therefore x = ux .

x = vnun+1 . . . = vnunu . . .

x = ux = uvnun . . .

Hence vnunu = uvnun. We have by induction ∃k vk = vnun and k ≥ 1, since u0 6= λ. Thus vku = uvk,
and by Lemma 19 ∃w v, u ∈ w∗.
Thereby v ∈ w∗, and by induction ∀i ∈ 0, n ui ∈ v∗. Hence ∀i ∈ 0, nui ∈ w∗. Since un+1 = unu and
un, u ∈ w∗, then un+1 ∈ w∗.
b) Let un+1 ∈ Pref(un) then

un = un+1u, where u 6= λ, and

un+1x = unx = un+1ux, therefore x = ux .

x = vn−1un . . . = vn−1un+1u . . .

x = ux = uvn−1un+1 . . .
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Hence vn−1un+1u = uvn−1un+1, therefore by Proposition 18 ∃w0 vn−1un+1,u ∈ w∗
0 . We have by induction

∃k vk = vn−1, k ≥ 1, since u0 6= λ. Thus

|vn−1un| = |vn−1un+1u| > |vn−1| + |u| ≥ |v| + |w0|

and vn−1un ∈ v∗, vn−1un = vn−1un+1u ∈ w∗
0 . This means that both |v| and |w0| are periods of vn−1un.

Now by Theorem 1 l = gcd(|v|, |w0|) is the period of vn−1un. Let

w ∈ Pref(vn−1) ∧ |w| = l

then vn−1un ∈ w+ because l\|vn−1un|.
The word vn−1un = ui1ui2 . . . uiκ

, where all uis
∈ {u0, u1, . . . , un}, besides,

∀j ∈ 0, n ∃ν ∈ 1, κ uj = uiν
.

Since ∀i ∈ 0, n ui ∈ v∗ then ∀i ∈ 0, n l\|ui|. Thus ∀i ∈ 0, n ui ∈ w∗.
Finally, un = un+1u and un ∈ w∗, therefore l is the period of un+1. Since u ∈ w∗

0 then l\|u|. Hence
l\|un+1|. Thus un+1 ∈ w∗.
This completes the induction.
⇒ Since ∀n vn ∈ w∗ then x = wω .

4 The Class of Bounded Bi-ideals

Definition 22. Let (ui) generates a bi-ideal x. The bi-ideal x is called bounded if ∃l ∀i |ui| ≤ l.

Proposition 23. The class of finitely generated bi-ideals Bf is the proper subclass of the class of bounded

bi-ideals Bb.

Proof. Note card{(ui) | ∀i ui ∈ {0, 1}} = c — the cardinality of the set of real numbers. Let (ui),
(vi) be two different sequences of letters in the alphabet {0, 1} that generate bi-ideals (xi), (yi) respec-
tively. Since (xi) 6= (yi) then card { (xi) | there is a sequence (ui) of letters in the alphabet {0, 1} that
generate a bi-ideal (xi)} = card{(ui) | ∀i ui ∈ {0, 1}} = c.
Let Um = {(u0, u1, . . . , um−1) | ∀i ui ∈ {0, 1}∗} then card

⋃∞
m=1

Um = ℵ0, where ℵ0 is the first infinite
cardinality. Therefore the cardinality of the set of all finitely generated bi-ideals in the alphabet {0, 1} is
equal to ℵ0. Since ℵ0 < c then Bf ⊂ Bb.
Let w = u1w1v1 = u2w2v2. We define a meet w1∩w2 as follows. If there exists an occurrence (u3, w3, v3) of
w3 in word w such that w = u3w3v3, where |u3| = max(|u1|, |u2|), |v3| = max(|v1|, |v2|), then w1∩w2 = w3.
Otherwise, w1 ∩ w2 = λ.

Lemma 24. Let (ui) generates a bi-ideal x, v0 = u0, ∀i (vi+1 = viui+1vi) and ∀i |ui| ≤ l. If v ∈ F(x)
and |v| = 2|vm| + l for some m, then vm ∈ F(v).

Proof. Since v ∈ F(x) then v ∈ F(vn) but v /∈ F(vn−1) for some n. Moreover, vn−1unvn−1 = vn = v′vv′′

for some v′, v′′.
Since v /∈ F(vn−1) then un ∩ v 6= λ. Hence, |vn−1 ∩ v| ≥ |vm| because of |un| ≤ l. Therefore vm ∈ F(v)
by Corollary 2.

Definition 25. It is said a factor u of an infinite word x occurs syndetically in x if there exists an

integer k such that in any factor of x of length k there is at least one occurrence of u. A word x is called

uniformly recurrent, or with bounded gaps, when all its factors occur syndetically in x.

Proposition 26. Bounded bi-ideals are uniformly recurrent.
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Proof. Let x be a bounded bi-ideal generated by (ui) then there exists l such that ∀i |ui| ≤ l. Let
u ∈ F(x), v0 = u0 and ∀i (vi+1 = viui+1vi) then there exists m such that u ∈ F(vm).
Let v ∈ F(x) and |v| = 2|vm|+ l then vm ∈ F(v) by Lemma 24. Therefore u ∈ F(v). So the factor u of x
occurs syndetically in x.

Let φ : A∗ → A∗ be a nonerasing morphism (namely, φ(A+) ⊆ A+) such that there exists a letter a ∈ A
such that

φ(a) = au , with u ∈ A+.

For all n ≥ 0 one has
φn+1(a) = φn(au) = φn(a)φn(u) ,

so that φn(a) is a proper prefix of φn+1(a). Thus the sequence (φn(a)) converges to a limit denoted by
φω(a), that is,

φω(a) = lim
n→∞

φn(a) .

One says that x = φω(a) is the infinite word obtained by iterating the morphism φ on the letter a.
Moreover, one has x = φ(x), that is, x is a fixed point for φ.
Very famous infinite word is Thue–Morse word t on two letters

t = 0110 1001 1001 0110 . . .

t can be introduced by iterating, on the letter 0, the morphism

τ : {0, 1}∗ → {0, 1}∗, defined as τ(0) = 01, τ(1) = 10 .

The word t was introduced by Thue in two papers [15, 16] of 1906 and 1912 and, subsequently, rediscovered
by Morse [11] and several other authors. Thue–Morse word is uniformly recurrent (see, e.g., [10]).

Definition 27. A factor u of a word x ∈ A∞ is called an overlapping factor of x if u = avava, with

a ∈ A and v ∈ A∗. We say that x is overlap-free, if x does not contain overlapping factors.

Corollary 28. Let y ∈ A∞. If x\y and x = uvuvu, where u 6= λ, then both x and y contain an

overlapping factor.

Proof. Since u 6= λ, then exist a letter a ∈ A and a word w ∈ A∗ such that u = aw. Hence x =
(aw)v(aw)v(aw) = a(wv)a(wv)aw. Thus x contains the overlapping factor a(wv)a(wv)a.

Proposition 29. (see, e.g., [10]) The Thue — Morse word t is overlap-free.

Lemma 30. If
∞

∀ i ui = λ then a bi-ideal x generated by (ui) is periodic.

Proof. Let v0 = u0, vi+1 = viui+1vi. Since
∞

∀ i ui = λ then ∃n ∀i > n ui = λ.
Hence vn+1 = vnun+1vn = v2

n.
Further, we shall prove the lemma by induction on j, i.e., suppose that vn+j = vk

n, where k = 2j , then
vn+j+1 = vn+jun+j+1vn+j = v2

n+j = v2k
n , where 2k = 2 · 2j = 2j+1.

Thus x = lim
i→∞

vi = lim
k→∞

vk
n = vω

n .

Lemma 31. If A is a finite alphabet then every bounded bi-ideal x ∈ Aω contains an overlapping factor.

Proof. Let x ∈ Aω be a bi-ideal generated by the sequence u0, u1, . . . , un, . . ..

(i) If
∞

∀ i ui = λ then x is periodic [Lemma 30]. Therefore [Corollary 28]
x contains an overlapping factor.

(ii) If
∞

∃ i ui 6= λ, then ∃i∃j (i < j ∧ ui = uj), because A is finite and ∃l∀i |ui| ≤ l. Since x is the bi-ideal
generated by the sequence u0, u1, . . . , un, . . . then x = lim

n→∞
vn, where v0 = u0 and vn+1 = vnun+1vn.

Hence by Corollary 2 vj = vj−1ujvj−1 = v′uivi−1ujvi−1uiv
′′. Thus uivi−1ujvi−1ui\x, therefore [Corol-

lary 28] x contains an overlapping factor.
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Proposition 32. The Thue–Morse word t is not a bounded bi-ideal.

Proof. Let us suppose that t is a bounded bi-ideal generated by (ui) then by Lemma 31 t contains an
overlapping factor. This is contradiction [Proposition 29].

Theorem 33. The class of bounded bi-ideals Bb is the proper subclass of the class of uniformly recurrent

words Ru, that is, Bb ⊆ Ru and Bb 6= Ru.

Proof. The class of bounded bi-ideals Bb is the subclass of the class of uniformly recurrent words Ru by
Proposition 26. The Thue–Morse word is uniformly recurrent as mentioned above. Therefore Bb 6= Ru

by Proposition 32.

Example 34. Let x be the bi-ideal generated by (ui), where

u0 = 0,

u1 = 1,

∀i > 1 ui = 00100 .

Then

v0 = 0,

v1 = 010,

v2 = 010 00100 010,

v3 = 01000100010 00100 01000100010,

. . .

and x = lim
i→∞

vi. Thus x is the bounded bi-ideal, besides x = (0100)ω. This demonstrates that straight-

forward generalization of Theorem 21 for bounded bi-ideals is not valid.

Convention Let x be a bi-ideal generated by (ui), then x = lim
i→∞

vi, where v0 = u0 and vi+1 = viui+1vi.

We adopt this notational convention henceforth.

Lemma 35. If vnu ∈ v∗ and ∀i ∈ Z+ un+i ∈ uv∗, then

∀i ∈ N vn+i ∈ v∗vn .

Proof. If i = 0 then vn+i = vn = λvn ∈ v∗vn.
Further, we shall prove the lemma by induction on i, i.e., suppose that vn+i ∈ v∗vn, namely,

∃k ∈ N vn+i = vkvn .

By assumption, vnu ∈ v∗ and un+i+1 ∈ uv∗, i.e.

∃l ∈ N vnu = vl ∧ ∃m ∈ N un+i+1 = uvm.

Hence

vn+i+1 = vn+iun+i+1vn+i = (vkvn)(uvm)(vkvn)

= vk(vnu)vm+kvn = vkvlvm+kvn ∈ v∗vn .

This completes the induction.
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Lemma 36. If t is the period of the bi-ideal x and |vn| ≥ t, then

∀i ∈ Z+ un+1x = un+ix .

Proof. We have vn+i = vn+i−1un+ivn+i−1. Hence, if i ∈ Z+ then [Corollary 2]

∀i ∈ Z+ ∃v′i vn+i = vnv′ivn .

Now, by definition of x

x = vnun+1vn . . .

x = vn+iun+i+1vn+i . . . = vnv′ivnun+i+1vn . . .

By assumption, x is periodic, therefore

x = vω, where |v| = t .

Since v ∈ Pref(vn) then by Lemma 11

x = vnun+1x ,

x = vnun+i+1x .

Hence ∀i ∈ Z+ x = vnun+ix . Thus ∀i ∈ Z+ un+1x = un+ix .

Theorem 37. A bi-ideal x is periodic if and only if

∃n ∈ N ∃u∃v (vnu ∈ v∗ ∧ ∀i ∈ Z+ un+i ∈ uv∗) .

⇒ Let T be the minimal period of the word x, then ∃n ∈ N |vn| ≥ T . Thus by Lemma 36

∀i ∈ Z+ un+1x = un+ix .

Let u be the longest word of the set
⋂∞

i=1
Pref(un+i) then

∀i ∈ Z+∃u′
i (un+i = uu′

i) .

Particularly, ∃k un+k = u. This means that

∀i ∈ Z+ uu′
ix = un+ix = un+kx = ux .

Thus
∀i ∈ Z+ u′

ix = x .

Hence by Lemma 15
∀i ∈ Z+ T\|u′

i| .

Thereby
∀i ∈ Z+ u′

i ∈ v∗ ,

where v = x[0, T ). Thus
∀i ∈ Z+ un+i = uu′

i ∈ uv∗ .

Note
x = vnun+1vn . . . = vnuu′

1vn . . .

Since u′
1 ∈ v∗ and v ∈ Pref(vn), then [Lemma 11] x = vnux. Hence [Lemmma 15] vnu ∈ v∗.

⇐ By Lemma 35
∀i ∈ N ∃ki ∈ N vn+i = vkivn .

Since lim
k→∞

|vk| = ∞ then lim
i→∞

ki = ∞. Thus

x = lim
k→∞

vk = lim
i→∞

vn+i = lim
i→∞

vkivn = vω .
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C. R. Acad. Sc. Paris, Sér. A, 262, 1149–1151.

[4] M. Crochemore and W. Rytter. (1995) Squares, cubes, and time–space efficient string searchinng. Algorith-
mica 13, 405–425.

[5] N.J. Fine, H.S. Wilf. (1965) Uniqueness Theorem for Periodic Functions. Proc. Amer. Math. Soc. 16, 109–
114.

[6] D. Gusfield. (1997) Algorithms on Strings, Trees, and Sequences. Cambridge University Press.

[7] N. Jacobson. (1964) Structure of Rings. American Mathematical Society, Providence, RI.

[8] M. Lothaire. (1983) Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17,
Addison–Wesley, Reading, Massachusetts.

[9] M. Lothaire. (2002) Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications,
Vol 90, Cambridge University Press, Cambridge.

[10] Aldo de Luca, Stefano Varricchio. (1999) Finiteness and Regularity in Semigroups and Formal Languages.

Springer–Verlag, Berlin, Heidelberg.

[11] M. Morse. (1921) Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22, 84–110.

[12] R. A. Rueppel. (1986) Analysis and Design of Stream Ciphers. Springer–Verlag, Berlin.

[13] I. Simon. (1988) Infinite Words and a Theorem of Hindman. Rev. Mat. Apl. 9, 97–104.

[14] J. A. Storer. (1988) Data compression: methods and theory. Computer Science Press, Rockville, MD.
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