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Abstract

We consider the billiard map in a unit cube of Rd+1, and we compute the complexity of a word

which codes an orbit in direction ω. Under some hypothesis on the direction, we obtain an exact

formula and shows that the order of magnitude is n
d.

1 Introduction

A billiard ball, i.e. a point mass, moves inside a polyhedron P with unit speed along a straight line until
it reaches the boundary ∂P , then instantaneously changes direction according to the mirror law, and
continues along the new line. Label the sides of P by symbols from a finite alphabet A whose cardinality
equals the number of faces of P . The orbit of a point corresponds to a word in the alphabet A. We define
the complexity of this word by the number of words of length n which appears in this infinite word.This
complexity depends of the infinite trajectory, we call it the directional complexity, indeed it does not
depend on the initial point under suitable hypothesis. We denote it p(n, ω). How complex is the game of
billiard in the hypercube?

For the square (coded with two letters) we obtain Sturmian words and complexity n + 1. It is the
famous paper of Morse and Hedlund [13], and it has been generalized to any rational polygon by Hubert
[10]. It is always linear in n. For an irrational polygon the only general result is that the billiard in
a polygon has zero entropy [9] [11], and thus the complexity grows sub-exponentially. For the convex
polyhedron the same fact is true [4]. The directional complexity, in the case of the cube (coded with three
letters) has been computed by Arnoux, Mauduit, Shiokawa and Tamura [1] (dimension 3). Unfortunately
this result was false, and we need some additional hypothesis on the direction, see [3] and [5] for a
classification of complexity along the direction. Moreover in [3] the computation has been done in the
case of some right prism with tiling polygonal base. The directional complexity is always quadratic in n

for those polyhedra, if the direction fulfils some good hyothesis.

In dimension d + 1 ≥ 3, the computation has been done by Baryshnikov [2] for the hypercube. The
complexity is a polynomial on n of degree d.

Here we compute the directional complexity for the hypercube. Our hypothesis are weaker than these
of Baryshnikov. The definitions are given in the following section. We obtain:

Theorem 1. Consider an unit cube of Rd+1, we code it by an alphabet with d + 1 letters. Let ω be a B

direction, consider a billiard word in the direction ω, denote the complexity of this word by p(n, d, ω).
Fix n, d ∈ N, the map ω 7→ p(n, d, ω) is constant on the set of B directions. Moreover if we denote it by
p(n, d) we have

p(n + 2, d) − 2p(n + 1, d) + p(n, d) = d(d − 1)p(n, d − 2) ∀ n, d ∈ N.
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Corollary 2. • For a B-direction, we have

p(n, d, ω) =

min(n,d)∑

i=0

n!d!

(n − i)!(d − i)!i!
∀ n, d ∈ N.

We obtain the same formula that Baryshnikov, but our hypothesis on the direction is weaker.
Convention: We assume that p(n, 0) = p(0, d) = 1 for all integers n, d.
In the two followings sections we recall the usual definitions and previous results.

2 Background

2.1 Combinatorics

For this section a general reference is [12] or [8].

Definition 3. Let A be a finite set called the alphabet. By a language L over A we mean always a
factorial extendable language: a language is a collection of sets (Ln)n≥0 where the only element of L0 is
the empty word, and each Ln consists of words of the form a1a2 . . . an where ai ∈ A and such that for
each v ∈ Ln there exists a, b ∈ A with av, vb ∈ Ln+1, and for all v ∈ Ln+1 if v = au = u′b with a, b ∈ A
then u, u′ ∈ Ln.
The complexity function p : N → N is defined by p(n) = card(Ln).

First of all we recall a well known result of Cassaigne concerning combinatorics of words [6].

Definition 4. Let L(n) be an extendable, factorial language. For any n ≥ 1 let s(n) := p(n + 1) − p(n).
For v ∈ L(n) let

ml(v) = card{u ∈ A, uv ∈ L(n + 1)},

mr(v) = card{w ∈ A, vw ∈ L(n + 1)},

mb(v) = card{u ∈ A, w ∈ A, uvw ∈,L(n + 2)}.

A word is call right special if mr(v) ≥ 2, left special if ml(v) ≥ 2 and bispecial if it is right and left
special. Let BL(n) be the set of the bispecial words.

Cassaigne [6] has shown:

Lemma 5. Let a language L, then the complexity satisfies

∀n ≥ 1 s(n + 1) − s(n) =
∑

v∈BL(n)

i(v),

where i(v) = mb(v) − mr(v) − ml(v) + 1.

For the proof of the lemma we refer to [6] or [7].

2.2 Billiard

In this section we recall some usual definitions, see [14]: Let P be a polyhedron, the billiard map is called
T , it is defined on a subset of ∂P × PRd+1, this space is called the phase space. In the following we
identify an element of PR

d+1 with a unit vector of Rd+1. Moreover if the projection of (m, ω) on ∂P is
on a face F we denote (m, ω) ∈ F .
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• We will call face of the cube a face of dimension d. If we use a face of smaller dimension we will
precise the dimension.

• Coding. We consider an alphabet associate to the billiard map inside the cube: we associate a letter
to each face of the cube such that two parallel faces have the same letter. Let (Fi)i∈Z be the sequence of
faces, then a billiard orbit (T n(m, ω))n∈Z is coded by the word v = (vn)n∈Z if and only if

T n(m, ω) ∈ Fi ⇐⇒ vn = i.

Definition 6. A direction ω is a minimal direction if for all point m the orbit (T n(m, ω) ∩ ∂P )n∈Z is
dense in ∂P .

The following result is classical, see [14] for a proof:

Lemma 7. Consider the billiard map inside a polyhedron P . If ω is a minimal direction, then the
complexity of the word v is independent of the initial point m.

It allows us to have the following definition:

Definition 8. Let ω a minimal direction, and m a point of the boundary. Let v be the coding of the orbit
of (m, ω) under T . The directional complexity p(n, ω, d) is the complexity of the word v.

Moreover we denote L(n, d, ω) the set of all words of length n which appear in direction ω.

3 Definitions

Definition 9. The real numbers (ai)i≤n are independent over Q if and only if
∑

i≤n

riai = 0, ri ∈ Q =⇒ ri = 0 ∀i ≤ n.

Definition 10. Let d be an element of N∗. A vector ω = (ωi) ∈ Rd+1 is called an irrational direction if
and only if:

The real numbers (ωi)1≤i≤d+1 are independent over Q.

Definition 11. Let d be an element of N∗. A vector ω = (ωi) ∈ Rd+1 is called a totally irrational
direction if and only if:

The real numbers (ωi)1≤i≤d+1 are independent over Q.
The real numbers (ω−1

i )i≤d+1 are independent over Q.

Definition 12. Let d be a non negative integer. A vector ω = (ωi) ∈ Rd+1 is called a B direction if and
only if:

The real numbers (ωi)1≤d+1 are independent over Q.
For each subset I ⊂ {1 . . . d} of cardinality three, the real numbers (ω−1

i )i∈I are independent over Q.

Now we recall the theorem of Baryshnikov [2].

Theorem 13 (Baryshnikov). Consider an unit cube of Rd+1, we code it by an alphabet with d + 1
letters. Let ω be a totally irrational direction, consider a billiard word in the direction ω, denote the
complexity of this word by p(n, d, ω). Then we have

p(n, d, ω) =

min(n,d)∑

i=0

n!d!

(n − i)!(d − i)!i!
∀ n, d ∈ N.

Remark 14. We have the implications:

ω totally irrational direction =⇒ ω B direction =⇒ ω irrational direction.
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